DYNAMICS OF DEFORMATION BEHAVIOR OF AK10M2N ALLOY DURING ELECTRON BEAM TREATMENT
https://doi.org/10.57070/10.57070/2304-4497-2024-1(47)-69-80
Abstract
The results of a study of the deformation characteristics of the AK10M2N alloy without treatment and after the application of electron beam treatment are presented. The samples were susceptible to destruction during the stretching process. Quantitative data on the deformation of samples were obtained, deformation engineering and true curves of non-irradiated and irradiated samples were constructed. The dynamics of the average strength and yield strength, relative residual elongation and contraction at rupture, depending on the energy density of the electron beam and the pulse duration of the electron beam, are analyzed. The energy density of the electron beam and the pulse duration ranged from 10 to 50 J/cm2 and from 50 to 200 microseconds. The most rational mode of electron beam processing has been identified, leading to an increase in the plastic and strength properties of the AK10M2N alloy. The effect of electron beam processing with an electron beam energy density of 50 J/cm2 and an electron beam pulse duration of 200 microseconds on the deformation characteristics of the AK10M2N alloy has been established. The considered mode leads to an increase in the tensile strength (75 %) compared to the strength limit of the cast alloy. It is revealed that the value of the relative residual elongation and contraction at rupture increases after electron beam processing. The analysis of the deformation curves allowed us to identify the stages of deformation. At the second stage of deformation, areas with different angles of inclination (with different coefficients of deformation hardening) were identified. Speckle patterns were obtained in the process of stretching the samples. When studying speckle patterns, it was found that there is an increase in the size of local deformation foci in the central part of non-irradiated samples, which also confirms the effectiveness of electron beam processing.
About the Authors
Anna A. AbaturovaRussian Federation
Senior Lecturer, Department of Quality Management and Innovation
Dmitrii V. Zaguliaev
Doctor of Technical Sciences, professor of the department of Natural Sciences named after Professor V.M. Finkel
Anna A. Serebryakova
Postgraduate student of the Department of Natural Sciences named after Professor V.M. Finkel
References
1. Бельский С.Е., Волчок И.П., Митяев А.А., Свидунович Н.А. Производство алюминиевых сплавов: состояние и перспективы. Литье и металлургия. 2006;2–1:130–133.
2. Дроздов А.А. Алюминий. Тринадцатый элемент: энциклопедия. Москва: Библиотека РУСАЛа. 2007:239.
3. Золоторевский В.С., Белов Н.А. Металловедение литейных алюминиевых сплавов. Москва: МИСиС. 2005:376.
4. Белов Н.А. Фазовый состав алюми-ниевых сплавов. Москва: ИД МИСиС. 2009:392.
5. Белов Н.А., Савченко С.В., Хван А.В. Фазовый состав и структура силуминов. Москва: МИСИС. 2008:282.
6. Qi M., Kang Y., Qiu Q., Tang W., Li J. Microstructures, mechanical properties, and corrosion behavior of novel high-thermal-conductivity hypoeutectic Al-Si alloys pre-pared by rheological high pressure die-casting and high pressure die-casting. Journal of Alloys Compounds. 2018;15(745):487‒502.
7. Марукович Е.И., Стеценко В.Ю. Про-блема модифицирования алюминиево-кремниевой эвтектики силуминов. пути решения. Литье и металлургия. 2018;(2):12–15.
8. https://doi.org/10.21122/1683-6065-2018-2-12-15
9. Samat S., Omar M.Z., Baghdadi H., Mohamed I.F., Aziz A.M. Mechanical properties and micro-structures of a modified Al–Si–Cu alloy pre-pared by thixoforming process for automo-tive connecting rods. Journal of Materials Research and Technology. 2021;10:1086–1102.
10. https://doi.org/10.1016/j.jmrt.2020.12.085
11. Ласковнев А.П., Иванов Ю.Ф., Петрикова Е.А., Коваль Н.Н., Углов В.В., Черенда Н.Н., Бибик Н.В., Асташинский М.В. Модификация структуры и свойств эвтектического силумина электронно-ионно-плазменной обработкой / Под ред. А.П. Ласковнева. Минск: Беларус. Наука. 2013:287.
12. Sigworth G.K. The modification of Ai-Si casting alloys: important practical and theoretical aspects. International Journal of Metalcasting. 2008;2(2):19–40. https://doi.org/10.1007/BF03355425
13. Li Q.L., Zhao S., Li B.Q., Zhu Y.Q., Wang C.Z., Lan Y.F., Xia T.D. A novel modifier on the microstructure and mechanical properties of Al – 7Si alloys. Materials Letters. 2019;251:156–160. https://doi.org/10.1016/j.matlet.2019.05.050
14. Lee K., Kwon Y.N., Lee S. Correlation of microstructure with mechanical properties and fracture toughness of A356 aluminum alloys fabricated by low-pressure-casting, rheo-casting, and casting-forging processes. Engineering Fracture Mechanics. 2008;75(14):4200–4216. https://doi.org/10.1016/j.engfracmech.2008.04.004
15. Li Q.L., Li B.Q., Li J.B., Xia T.D., Lan Y.F., Guo T.B. Effects of the addition of Mg on the microstructure and mechanical properties of hypoeutectic Al-7%Si alloy. International Journal of Metalcasting. 2017;11:823–830. https://doi.org/10.1007/s40962-016-0131-6
16. Beroual S., Boumerzoug. Z., Paillard P., Borjon-Piron Y. Effects of heat treatment and addition of small amounts of Cu and Mg on the microstructure and mechanical properties of Al-Si-Cu and Al-Si-Mg cast al-loys. Journal of Alloys and Compounds. 2019;784:1026–1035. https://doi.org/10.1016/j.jallcom.2018.12.365
17. Giovanni M. Di T., Mørtsell E.A., Saito T., Akhtar S., Sabatino M. Di, Li Y., Cerri E. Di Influence of Cu addition on the heat treatment response of A356 foundry alloy. Materials Today: Communications. 2019;19:342–348. https://doi.org/10.1016/j.mtcomm.2019.02.013
18. Czekaj E., Zych J., Kwak Z. , Garbacz-Klempka A. Quality Index of the AlSi7Mg0.3 Aluminium Casting Alloy Depending on the Heat Treatment Parameters. Archives of Foundry Engineering. 2016;16:25–28. https://doi.org/10.1016/j.mtcomm.2019.02.013
19. Лысых С.А., Мишигдоржийн У.Л., Хара- ев Ю.П., Москвин П.В., Воробьёв М.С., Мокеев М.А. Электронно-пучковая моди-фикация боридных диффузионных слоев на поверхности штамповой стали 5хнм: ZAETVV. Ползуновский ВЕСТНИК. 2023;(2):217–224. https://doi.org/10.25712/ASTU.2072-8921.2023.02.028
20. Cai J., Li Ch., Yao Y., Lyu P., Guan Q., Li Y., Lu J. Microstructural modifications and high-temperature oxidation resistance of arc ion plated NiCoCrAlYSiHf coating via high-current pulsed electron beam. Corrosion Science. 2021;182:109281.
21. https://doi.org/10.1016/j.corsci.2021.109281
22. Lee W.J., Kim J., Park H.W. Improved corrosion resistance of Mg alloy AZ31B induced by selective evaporation of Mg using large pulsed electron beam irradiation. Journal of Materials Science & Technology. 2019;35(5):891–901. https://doi.org/10.1016/j.jmst.2018.12.004
23. Liu Y.R., Zhang K.M., Zou J.X., Liu D.K., Zhang T.C.Effect of the high current pulsed electron beam treatment on the surface microstructure and corrosion resistance of a Mg-4Sm alloy. Journal of Alloys and Compounds. 2018;741:65–75. https://doi.org/10.1016/j.jallcom.2017.12.227
24. Zhang T.C., Zhang K.M., Zou J.X., Yan P., Yang H.Y., Song L.X., Zhang X. Surface microstructure and property modifications in a Mg-8Gd-3Y-0.5Zr magnesium alloy treated by high current pulsed electron beam. Journal of Alloys and Compounds. 2019;788:231–239. https://doi.org/10.1016/j.jallcom.2019.02.130
25. Zhang X., Zhang K., Zou J., Yan P., Song L., Liu Y. Surface microstructure modifications and in-vitro corrosion re-sistance improvement of a WE43 Mg alloy treated by pulsed electron beams. Vacuum. 2020;173:109132.
26. https://doi.org/10.1016/j.vacuum.2019.109132
Review
For citations:
Abaturova A., Zaguliaev D., Serebryakova A. DYNAMICS OF DEFORMATION BEHAVIOR OF AK10M2N ALLOY DURING ELECTRON BEAM TREATMENT. Bulletin of the Siberian State Industrial University. 2024;(1):69-80. (In Russ.) https://doi.org/10.57070/10.57070/2304-4497-2024-1(47)-69-80