Preview

Bulletin of the Siberian State Industrial University

Advanced search

BEHAVIOR OF METALS AND ALLOYS UNDER THE INFLUENCE OF A MAGNETIC FIELD

https://doi.org/10.57070/2304-4497-2024-1(47)-9-18

Abstract

A brief overview of the latest experimental results of studying metals and alloys under the influence of an external magnetic field is presented. The phenomenon of magnetism is widely studied by various groups of scientists for use in devices and devices used both in people's daily lives and on an industrial scale. It is revealed that the influence of the magnetic field on structural and phase transformations, strength and plastic properties of materials during deformation mainly depends on the magnetic nature of the metal. A constant magnetic field contributes to the change of various deformation characteristics of a number of solids with ionic, ion-covalent, covalent, molecular and metallic bonding of solids. It has been established that there are additional factors that cause changes in the deformation characteristics of metals and alloys under the influence of external magnetic fields. During the analysis, the following factors were identified, additionally influencing: the melting point of the metal, the structure of the crystal lattice, the temperature during the experiment, magnetic induction during magnetic field treatment. It was revealed that the largest number of studies were conducted on titanium, aluminum and their alloys. An insufficient number of studies in the field of magnetic processing on technically pure lead have been noted. The results of the review may have academic significance ‒ the results obtained in the study will expand the understanding of the influence of magnetic influences on polycrystalline metallic materials, and the patterns established in the work can be used in the study of the physical properties of metallic materials.

About the Authors

Anna A. Serebryakova
Siberian State Industrial University
Russian Federation

Postgraduate student of the Department of Natural Sciences named after Professor V.M. Finkel



Vitaly V. Shlyarov
Siberian State Industrial University

Post-graduate student of the Chair of Science named after V.M. Finkel’



Dmitry V. Zaguliaev
Siberian State Industrial University

Dr. Sci. (Tech..), Prof. of the Chair of Natural Sciences named after Professor V.M. Finkel



References

1. Morgunov R.B., Piskorskii V.P., Valeev R.A., Korolev D.V. Thermodynamic analysis of magnetoplastic effects in "non-magnetic" metals. Trudy VIAM. 2018;12:79–87.(In Russ.).

2. https://doi.org/10.18577/2307-6046-2018-0-12-79-87 EDN: YROENN.

3. Morgunov R.B., Valeev R.A., Skvortsov A.A., Korolev D.V., Piskorskii V.P., Kunitsyna E.I., Kucheryaev V.V., Koplak O.V. Magneto-plastic and magnetomechanical effects in aluminum alloys with magnetostrictive mi-croswitches. Trudy VIAM.2019;10:3–13. (In Russ.).

4. https://doi.org/10.18577/2307-6046-2019-0-10-3-13; EDN: BRGQUK.

5. Alshits V.I., Darinskaya E.V., Koldaeva M.V., Petrzhik E.A. Crystallography Reports. 2003;48:768–795.

6. Pokoev A., Osinskaya Yu., Shakhbanova S., Yamshchikova K. Magnetoplastic effect in aluminum alloys. Izvestiya Rossiiskoi akademii nauk. Seriya fizicheskaya. 2018;82;961–964. (In Russ.).

7. https://doi.org/10.1134/S0367676518070335 EDN: XWOIWD.

8. Pokoev A., Osinskaya J. Manifestation of Magnetoplastic Effect in Some Metallic Al-loys. Defect and Diffusion Forum. 2018;383:180–184. http://dx.doi.org/10.4028/www.scientific.net/DDF.383.180

9. Li G.-R., Wang H., Li P.-S., Gao L.-Z., Peng C.-X., Zheng, R. Mechanism of dislocation kinetics under magnetoplastic effect. Acta Physica Sinica. 2015;64(14):148102.

10. http://dx.doi.org/10.7498/aps.64.148102

11. Kraev M.V., Kraeva V.S. Plastic deformation of metals and alloys using a constant magnet-ic field. In: «Materials of the 6th International Conference "Space Technologies: Present and Future». Dnepropetrovsk 2017:75. (In Russ.).

12. Pletnev S.V. Magnetic field, properties, appli-cation: Scientific and methodological refer-ence manual. Sankt-Peterburg: Gumanistika, 2004:624. (In Russ.).

13. Ida N. The Static Magnetic Field. In: Engi-neering Electromagnetics. 2021;377–418. http://dx.doi.org/10.1007/978-3-030-15557-5_8

14. Kassner M.E. Fundamentals of Creep in Met-als and Alloys. Elsevier Ltd, 2015:356. http://dx.doi.org/10.1016/B978-0-08-047561-5.X0001-2

15. Popova L.I., Boldyrev D.A. Physics of strength and plasticity. Togliatti: Izd-vo TGU, 2017:74. (In Russ.).

16. Bezlepkin A.A., Kuntsevich S.P., Kostyukov V.I. Orientation and relaxation features of dynam-ic magnetic susceptibility PBFE12O19 during the transition from a magnetically ordered state to a paramagnetic state. Fizika tverdogo tela. 2015;11:2151–2154. (In Russ.).

17. EDN: UJMJMR.

18. Aksenova K.V., Shlyarov V.V., Zagulyaev D.V. Deformation behavior of technically pure titanium in a constant magnetic field of 0.3 T. In book: Actual problems of physical metallurgy of steels and alloys: a collection of theses of reports of the XXVI Ural School of Thermists, Yekaterinburg, February 07-11, 2022. Yekaterinburg: Izdatel'stvo Ural'skogo universiteta, 2022;123–127. (In Russ.). EDN: LTYFYK.

19. Shlyarov V.V., Zagulyaev D.V., Gromov V.E., Glezer A.M., Serebryakova A.A. Fea-tures of deformation of technically pure tita-nium in a constant magician-nitric field. De-formatsiya i razrushenie materialov. 2022;3:25–31. (In Russ.). EDN: NZOQKK.

20. Shlyarov V.V., Zagulyaev D.V., Shlyarova Yu.A., Serebryakova A.A., Ivanov Yu.F., Gromov V.E. Change in the elemental and phase composi-tion, defective substructure of samples of the "film (TITAN )/( AK5M2) substrate" system exposed to electron beam irradiation. In: Ma-terials in the external fields: works of the XII International Online Symposium. Novokuz-netsk: ITs SibGIU. 2023:67–69. (In Russ.).

21. Kurek E.I., Kurek I.G., Oleinich-Lysyuk A.V., Raranskii N.D. On the features of magnetic aftereffection in highly pure diamagnetic be-ryllium. Fizika tverdogo tela. 2014;56(8):1546–1553. (In Russ.). EDN: ADYYSB.

22. Osinskaya Yu.V., Petrov S.S., Pokoev A.V., Runov V.V. Investigation by small-angle neu-tron scattering of magnetoplastic effect in be-ryllium bronze during aging in magnetic fields. Fizika tverdogo tela. 2010;52(3):486–488 (In Russ.). EDN: SNVZDJ.

23. Osinskaya Yu.V., Petrov S.S., Pokoev A.V. Comprehensive experimental study of magne-toplastic effect in copper-beryllium alloy. Vestnik SamGU. 2010;4(78):145–154. (In Russ.).

24. Peschanskaya N.N., Smirnov B.I., Shpeizman V.V. Jump creep when compressing zinc single crystals in a magnetic field. Fizika tverdogo te-la. 2008;50(6):997–1001. (In Russ.).

25. EDN: RCRTQN.

26. Kalytka V.A., Bashirov A.V., Ospanov B.S., Baltabaeva N.T. Magnetic permeability of di-amagnetic and ferromagnetic dielectrics. Ak-tual'nye nauchnye issledovaniya v sovremen-nom mire. 2019;5-1(49):145–148. (In Russ.). EDN: NNLLHT.

27. Mogil'nikova T.T. Stupenchataya polzuchest' svintsa. Voprosy atomnoi nauki i tekhniki. 2010;6:42–46. (In Russ.). EDN: RCRIWD.

28. Mogil'nikova T.T. Effect of periodic fluctua-tions on lead non-monotonic creep. Visnik KhNU. 2010;14:65–69. (In Russ.). EDN: OMORLL.

29. Elsukova T.F., Novoselova E.M., Karavaeva V.V., Angelova G.V. High temperature creep stages of lead polycrystals as evolution of structural levels of plastic deformation. Fizicheskaya me-zomekhanika. 2000;3(5):91–99. (In Russ.).

30. Zhukova K.P., Elsukova T.F., Panin V.E., Rudenko Yu.N. Temperature dependence of deformation processes at grain boundaries and in boundary zones when stretching lead poly-crystals.Izvestiya vuzov. Fizika. 1988;4:13–18. (In Russ.).

31. Elsukova T.F., Panin V.E. Regularities and mechanism of cyclic deformation, statistics on the development of fatigue cracks in lead and alloys based on it. Fizika metallov i metallovedenie. 2004;97(1):121–128. (In Russ.).

32. Krasheninin V.I., Kuz'mina L.V., Dorokhov M.A. Reactivity and dislocation structure of silver and lead azide crystals in an alternating magnetic field. Izvestiya vuzov. Fizika. 2006;49(1):103–106. (In Russ.).

33. Changjan A., Meakniti S., Udomsamuthirun P. The temperature-dependent surface critical magnetic field (HC3) of magnetic superconductors: Applied to lead bismuth (Pb82Bi18) superconductors. Journal of Physics and Chemistry of Solids. 2017;107:32⎯35. http://dx.doi.org/10.1088/1742-6596/2431/1/012044

34. Serebryakova A.A., Zagulyaev D.V., Shlyarov V.V. Influence of magnetic field with induction up to 0.5 T on dynamics of deformation charac-teristics of lead. Fundamental'nye problemy sovremennogo materialovedeniya. (In Russ.). 2023;20(1):52–58. http://dx.doi.org/10.25712/ASTU.1811-1416.2023.01.006;EDN: KYCQMF.

35. Serebryakova A. A., Zagulyaev D. V., Shlya-rov V. V., Gromov V. E., Aksenova K. V. Study of microhardness and plasticity parame-ter of lead in external magnetic fields with in-duction up to 0.5 T. Izvestiya Altaiskogo gosu-darstvennogo universiteta. 2023;4(132):52–58. (In Russ.).

36. https://doi.org/10.14258/izvasu(2023)4-07


Review

For citations:


Serebryakova A., Shlyarov V., Zaguliaev D. BEHAVIOR OF METALS AND ALLOYS UNDER THE INFLUENCE OF A MAGNETIC FIELD. Bulletin of the Siberian State Industrial University. 2024;(1):9-18. (In Russ.) https://doi.org/10.57070/2304-4497-2024-1(47)-9-18

Views: 11


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304 - 4497 (Print)
ISSN 2307-1710 (Online)