Preview

Bulletin of the Siberian State Industrial University

Advanced search

MAGNETIC FEATURES OF CONDUCTORS WITH DIFFERENT CONDUCTIVITY

https://doi.org/10.57070/2304-4497-2025-1(51)-9-14

Abstract

The validity of attributing a quantum of angular momentum to any multiparticle quantum system, including a Cooper pair of electrons, has been verified. The latter are formed in conductors with a short free path of electrons and are not formed in conductors with a long free path of electrons (to clarify the wording – avoid repetitions). A Cooper pair of electrons is obtained as a result of pair correlation due to electron-phonon attraction between electrons exceeding Coulomb repulsion (phonons arise when the crystal lattice vibrates). The assignment of the Cooper pair of electrons to the quantum of angular momentum l occurred exclusively when determining the  quantum of the magnetic flux. If there are not one, but two electrons (correlated Cooper or uncorrelated), and given that the magnetic flux is additive, the total flux will be four times greater than is commonly assumed Microscopic Theory of BCS Superconductivity (Bardeen theory ‒ Cooper‒Schrieffer) satisfies only paired correlations of electrons, however, there are no contraindications for the occurrence of multiparticle correlations. In this case, the quantum of the magnetic flux will decrease indefinitely. The angular momentum is an additive quantity. This means that the angular momentum quantum l, attributed to a multiparticle quantum system, must be shared between the particles of the system. Therefore, each particle will have a moment of momentum less than a quantum, which is unacceptable. Endowing a Cooper pair of electrons with a quantum of angular momentum l is illegal. The angular momentum quantum l can be attributed to only one quantum particle, and cannot be attributed to a quantum set of particles. The quantum of the magnetic flux is exclusively the quantum of F. London. 

About the Author

Igor’ P. Popov
Kurgan State University
Russian Federation

Cand. Sci. (Eng.), Associate Professor of the Department of Theoretical, Experimental Physics and Computer Methods of Physics



References

1. 1. Seeger R.L., Forestier G., Gladii O., Leiviskä M., Auffret S., Joumard I., Rubio-Roy M., Baltz V., Gomez C., Buzdin A.I., Houzet M. Penetration depth of cooper pairs in the irmn antiferromagnet. Physical Review B. 2021;104:054413. https://doi.org/10.1103/PhysRevB.104.054413

2. Daido A., Yanase Y. Rectification and nonlinear hall effect by fluctuating finite-momentum cooper pairs. Physical Review Research. 2024;6:L022009. https://doi.org/10.1103/physrevresearch.6.l022009

3. Chan A.K., Cubukcu M., Montiel X., Komori S., Vanstone A., Thompson J.E., Perkins G.K., Kinane C.J., Caruana A.J. , Boldrin D., Blamire M., Robinson J., Eschrig M., Kurebayashi H., Cohen L.F. Controlling spin pumping into superconducting nb by proximity-induced spin-triplet cooper pairs. Communications Physics. 2023;6:287.

4. https://doi.org/10.1038/s42005-023-01384-w

5. Furukawa T., Miyagawa K., Matsumoto M., Sasa-ki T., Kanoda K. Microscopic evidence for preformed cooper pairs in pressure-tuned organic superconductors near the MOTT transition. Physical Review Research. 2023;5:023165.

6. https://doi.org/10.1103/physrevresearch.5.023165

7. Ishida K., Matsueda H. Two-step dynamics of photoinduced phonon entanglement generation between remote electron-phonon systems. Journal of the Physical Society of Japan. 2021;90:104714. https://doi.org/10.7566/JPSJ.90.104714

8. Liu Y., Han Ya., Yu Ju., Zhang H., Yin Q., Lei H., Hu J., Zhang D. Visualizing electron-phonon and anharmonic phonon-phonon coupling in the kagome ferrimagnet GDMN6SN6. Applied Physics Letters. 2023;122.

9. https://doi.org/10.1063/5.0152116

10. Wu Ch., Liu Ch. Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TAN. Chinese Physics B. 2023;32:046502. https://doi.org/ 10.1088/1674-1056/acb201

11. Серебрякова А.А., Загуляев Д.В., Шлярова Ю.А., Иванов Ю.Ф., Громов В.Е. Исследование пара-метров кристаллической решетки, фазового со-става и структуры сплава АК5М2 после по-верхностного модифицирования титаном и по-следующего облучения электронным пучком. Вестник Сибирского государственного инду-стриального университета. 2022;1:63–68.

12. Жерновой А.И. Квантование магнитного потока, создаваемого наночастицей магнетита. Научное приборостроение. 2018;2:45–48.

13. Popov I.P. Combined Vectors and Magnetic Charge. Tech. Phys. 2024;69:2397–2405. https://doi.org/10.1134/S1063784224700415

14. Попов И.П. Сведение постоянной Планка к классическим фундаментальным константам. Вестник Удмуртского университета. Физика и химия. 2014;3:51–54.

15. Popov I.P. Seven Singular Points in Quantum Mechanics. Tech. Phys. 2024;69:2406–2408. https://doi.org/10.1134/S1063784224700427

16. Сивухин Д.В. Атомная и ядерная физика. Москва: Физматлит. 2002:784.

17. Шляров В.В., Загуляев Д.В., Аксенова К.В. Изменение механических характеристик технически чистого алюминия в условиях воздействия магнитного поля. Вестник Сибирского государственного индустриального университета. 2022;2:10–16.

18. Лосев Г.Л., Ельтищев В.А. Электромагнитные измерения уровня и проводимости цветных металлов. Вестник Пермского университета. Физика. 2020;4:63–68.

19. https://doi.org/10.17072/1994-3598-2020-4-63-68

20. Azar M.El., Bouhlal A., Jellal A. Boosting energy levels in graphene magnetic quantum dots through magnetic flux and inhomogeneous gap. Physica B: Condensed Matter. 2024;685:416005. https://doi.org/10.1016/j.physb.2024.416005

21. Azar M.El., Bouhlal A., Alhaidari A.D., Jellal A. Effect of magnetic flux on scattering in a graphene magnetic quantum dot. Physica B: Condensed Matter. 2024;675:415610.

22. https://doi.org/10.1016/j.physb.2023.415610

23. Bryon Ja., Weiss D.K., You X., Sussman S., Croot X., Huang Z., Koch J., Houck A.A. Time-dependent magnetic flux in devices for circuit quantum electrodynamics. Physical Review Applied. 2023;19:034031.

24. https://doi.org/10.1103/physrevapplied.19.034031

25. Павлов В.Д. Расчетный минимальный радиус позитрония. Инженерная физика. 2024;2:24–29. https://doi.org/10.25791/infizik.2.2024.1385

26. Павлов В.Д. О корректности размера позитрония. Вестник Томского государственного университета. Химия. 2024; 33:24‒32. https://doi.org/10.17223/24135542/33/2


Review

For citations:


Popov I. MAGNETIC FEATURES OF CONDUCTORS WITH DIFFERENT CONDUCTIVITY. Bulletin of the Siberian State Industrial University. 2025;(1):9-14. (In Russ.) https://doi.org/10.57070/2304-4497-2025-1(51)-9-14

Views: 193


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304 - 4497 (Print)
ISSN 2307-1710 (Online)