Preview

Bulletin of the Siberian State Industrial University

Advanced search

BEHAVIOR OF CEMENTITE IN PERLITE STEEL UNDER DEFORMATION

https://doi.org/10.57070/2307-4497-2023-4(46)-9-20

Abstract

A brief overview of the latest experimental results of the study of cement as a structural component of perlite, obtained by transmission microscopy methods for various types of deformation is presented. The behavior of lamellar and granular cementite under types of active deformation (forging, stamping, drawing, rolling, long-term operation of rails) has been studied. Studies of granular perlite on samples of carbon eutectoid steel grade U8 containing 0.8% C, 0.18 % Mn, 0.22% Si, 0.17% Cr, 0.12%Ni, 0.10 % Cu are presented. The historical aspect of the origin of the name cementite from the history of the metallographic study of cementite as an independent phase is considered. An example of the practical application of pearlitic steel in the construction of the Akashi-Kaike bridge in Japan (the longest single-span suspension bridge based on huge pearlitic steel cables) is given Attention is paid to the analysis of transformation during various technological processes, its morphology and structural features, and the main mechanisms of destruction are analyzed. It was revealed that with a large missed tonnage, a critical density of defects accumulates in the surface layer, which inhibits the development of reversible elastic deformation and the involvement (development) of the mechanism of plastic distortion. It is suggested that an increase in the service life of rails can be achieved due to a longer preservation of a structure capable of developing reversible deformation processes that exclude the destruction of cementite plates in pearlite colonies with subsequent movement of carbon atoms to defects (dislocations) and the iron lattice region

About the Authors

Viktor Gromov
Siberian State Industrial University
Russian Federation

Dr. Sci. (Phys.-Math.), Prof., Head of the Chair of Science named after V.M. Finkel



Mikhail Porfir’ev
Siberian State Industrial University
Russian Federation

Candidate of the Department of Natural Sciences named after Prof. V.M. Finkel



Oleg Peregudov
Omsk State Technical University
Russian Federation

Cand. Sci. (Eng.), Vice-Rector for Youth Policy and Educational Activities



Anna Serebryakova
Siberian State Industrial University

Postgraduate student of the Department of Natural Sciences named after Professor V.M. Finkel



References

1. Schastlivtsev V.M., Medvedeva N.I., Kraposhin V.S., Talis A.L., Kar'kina L.E., Kar'kin I.N., Kuznetsov A.R., Kabanova I.G., Yakovleva I.L., Mirzaev D.A., Tabatchikova T.I., Voronin V.I., Khlebnikova Yu.V., Okishev K.Yu. Ce-mentite in carbon steels. Yekaterinburg: Izd-vo UMTs UPI, 2017:380. (In Russ.).

2. Gulyaev A.P. Metallovedenie. Moscow: Metallurgiya, 1986:544. (In Russ.).

3. Tushinskii L.I., Bataev A.A., Tikhomirova L.B. Perlite structure and structural strength of steel. Novosibirsk: Nauka: Sib. izd. firma, 1993:278. (In Russ.).

4. Bhadeshia H. Cementite. International Materials Reviews. 2019;65(1):1–27. http://dx.doi.org/10. 1080/09506608.2018.1560984

5. Chezeau N., De Réaumur à la Première Guerre Mondiale: les étapes de la maîtrise de l’acier, l’essor des aciers spéciaux. Comptes Rendus Chimie. 2012;15(7):585‒594

6. Schastlivtsev V.M. ed. Cementite in carbon steels. Ekaterinburg: Izd-vo UMTs UPI, 2017:380. (In Russ.).

7. Gavrilyuk V.G. Carbon distribution in steel. Kiev: Naukova dumka. 1987:208. (In Russ.).

8. Gridnev V.N., Gavrilyuk V.G., Meshkov Yu.Ya. Strength and plasticity of cold-formed steel. Kiev: Naukova dumka. 1974:231. (In Russ.).

9. Koptseva N.V., Efimova Y.Y., Gulin A.E. Behavior of Fine Pearlite Plates in the Deformation of High-Carbon Steel. Steel in Translation. 2019;49:286–290.

10. Hong M.N., Reynolds Jr. W.T., Tarui T., Hono K. Atom Probe and Transmission Electron Microscopy Investigations of Heavily Drawn Pearlitic Steel Wire. Metallurgical and Materials Transactions A. 1999;30(13):717–727. http://dx. doi.org/10.1007/s11661-999-1003-y

11. Read H.G., Reynolds W.T., Hono K., Tarui T. Apfim and TEM Studies of Drawn Pearlitic Wire. Scripta materialia. 1997;37(8):1221–1230.

12. Kar'kina L.E., Zubkova T.A., Yakovleva I.L. Investigation of the dislocation structure of granular perlite cementite after cold plastic deformation. Fizika Metallov i Metallovedenie. 2013;114(3):255–263. (In Russ.). https://doi.org/ 10.7868/S0015323013030091

13. Tsellermaer V.Ya. Substructural-phase transformations during intensive plastic deformation of metals. Izvestie vuzov. Chernaya metallurgiya. 1999;12:44–49. (In Russ.).

14. Gavriliyuk V.G. Decomposition of ce-mentite in pearlitic steel due to plastic deformation. Materials Science and Engineering: A. 2003;345(1-2):81–89. http://dx.doi.org/10.1016/S0921-5093(02)00358-1

15. Grachev V.V., Gromova A.V., Tsellermaer V.Ya., Ivakhin M.P., Koz-lov E.V. Evolution of dislocation substructures in low- and medium-carbon steels during drawing. Vestnik Samarskogo gosudarstvennogo tekhnicheskogo univer-siteta. Ser.: Fiz.-mat. nauki. 2004;27:123‒129. (In Russ.).

16. Kuznetsov R.V., Kormyshev V.E., Gromov V.E., Ivanov Yu.F., Shlyarova Yu.A. Transformation of structural-phase states in the rail head during extremely long-term operation. News of universities. Izvestiya vuzov. Chernaya metallurgiya. 2022;65(3):209–215. (In Russ.). https://doi.org/ 10.17073/0368-0797-2022-3-209-215

17. Kuznetsov R.V., Peregudov O.A., Shlyarov V.V. Redistribution of carbon atoms in rails during ultra-long operation. Izvestiya vuzov. Chernaya metallurgiya. 2022;65(2):134–136. (In Russ.). https://doi.org/10.17073/0368-0797-2022-2-134-136

18. Gromov V.E., Ivanov Yu.F., Kuznetsov R.V., Glezer A.M., Shlyaro-va Yu.A., Peregudov O.A. Deformation transformation of the structure and phase composition of the rail surface during ultra-long operation. Deformatsiya i razrushenie materialov. 2022;1:35–39. (In Russ.). https://doi. org/10.31044/1814-4632-2022-1-35-39

19. Kuznetsov R.V., Gromov V.E., Ivanov Yu.F., Yur'ev A.A., Kormy-shev V.E., Polevoi E.V. Evolution of structural-phase states and properties of differentially hardened 100-meter rails during extremely long-term operation. Message 5. Gradient structural-phase states along the radius of rounding of the rail head after ultra-long operation. Problemy chernoi metallurgii i materialovedeniya. 2022;1:9–18. (In Russ.). https://doi.org/10.54826/19979258_2022_1_56

20. Ivanov Yu.F., Gromov V.E., Kuznetsov R.V., Shlyarova Yu.A., Yur'-ev A.A., Kormyshev V.E. The structure of rails after extremely long-term operation. Izvestiya vuzov. Fizika. 2022;65(3(772)):160–165. (In Russ.). https://doi.org/10.17223/00213411/65/3/160

21. Kuznetsov R.E., Gromov V.E., Ivanov Yu.F., Kormyshev V. E., Shlyarova Yu.A., Yur'ev A.A. Gradients of structure, phase composition and dislocation substructure of rails during ultra-long operation. Izvestiya Altaiskogo gosudarstvennogo universiteta. 2022;1:44–50. (In Russ.). https://doi.org/10.14258/izvasu(2022)1-06

22. Grigorovich K.V., Gromov V.E., Kuznetsov R.V., Ivanov Yu.F., Shlyarova Yu.A. For-mation of a thin structure of pearlite steel under ultra-long plastic deformation. Doklady Rossiiskoi akademii nauk. Fizika, tekhnicheskie nauki. 2022;503(1):8–12. (In Russ.). https://doi.org/ 10.31857/S2686740022020079

23. Kozlov E.V., V.E. Gromov, Kovalenko V.V., Popova N.A. Gradient structures in pearlitic steel. Novokuznetsk: ITs SibGIU. 2004:224. (In Russ.).

24. Kozlov E.V., Popova N.A., Zhuleikin S.G., Kovalenko V.V., Veter V.V., Gromov V.E. Gradient structures of nonequilibrium perlite in deformable steel. Fizicheskaya mezomekhanika. 2003;6(5):73–79. (In Russ.). https://doi.org/ 10.24411/1683-805X-2003-00067

25. Popova N.A., Zhuleikin S.G., Ignatenko L.N., Ko-valenko V.V., Veter V.V., Gromov V.E., Kozlov E.V. Formation of gradient structures in pearlite steel during operation. Vestnik rossiiskikh universitetov. Matematika. 2003;4:589‒590. (In Russ.).

26. Grachev V.V., Sarychev V.D., Petrov V.I., Gromov V.E. Gradient structural-phase states in rail steel formed during differentiated heat treatment and during operation. Vestnik TGU. 2003;8:4 (In Russ.).

27. Panin V.E., Egorushkin V.E., Panin A.V., Chernyavskii A.G. Plastic distortion as a fundamental mechanism in nonlinear mesomechanics of plastic deformation and fracture. Physical Mesomechanics. 2016;19(3):255–268. http://dx.doi. org/10.1134/S1029959916030048

28. Panin V.E., Derevyagina L.S., Lebedev M.P., Syromyatnikova A.S., Surikova N.S., Pochivalov Yu.I., Ovechkin B.B. Scientific basis for cold shortness of structural bcc steels and their structural degradation at below zero temperatures. Physical Mesomechanics. 2017;20(2):125–133. http://dx.doi. org/10.1134/S1029959917020023

29. Panin V.E., Ivanov Yu.F., Yur'ev A.A., Gromov V.E., Panin S.V., Kormyshev V.E., Rubannikova Yu.A. Evolution of the fine structure and properties of metal rails during long-term operation. Fizi-cheskaya mezomekhanika. 2020;5:85‒94. (In Russ.).

30. Fetisov V.P. Assessment of plasticity during deformation of carbon steel. Lit'e i metallurgiya. 2019;3:85‒88. (In Russ.).

31. Gavriljuk V.G. Decomposition of cementite in pearlitic steel due to plastic deformation. Materials Science and Engineering A. 2003;345:81–89. http://dx.doi.org/10.1016/S0921-5093(02)00358-1

32. Li Y.J., Chai P., Bochers C., Westerkamp S., Goto S., Raabe D., Kirchheim R. Atomic-scale mechanisms of deformation-induced cementite decomposition in pearlite. Acta Materialia. 2011;59:3965–3977. http://dx.doi.org/10.1016/j.actamat.2011.03.022

33. Gavriljuk V.G. Effect of interlamellar spacing on cementite dissolution during wire drawing of pearlitic steel wires. Scripta Materialia. 2001;45(12):1469–1472. http://dx.doi.org/10.1016/S1359-6462(01)01185-X

34. Panin V.E., Egorushkin V.E., Panin A.V. Nonlinear wave processes in a deformable solid as a multilevel hierarchically organized system. UFN. 2012;182(12):1351–1357. (In Russ.). https://doi. org/10.3367/UFNr.0182.201212i.1351

35. Panin V.E., Gromov V.E., Ivanov Yu.F., Yur'ev A.A., Kormyshev V.E. The role of lattice curvature in the degradation of the structure of the surface layer of metal rails during long-term operation. Doklady Rossiiskoi Akade-mii nauk. Fizika, Tekhnicheskie Nauki. 2020;494(1):89–92. (In Russ.). https://doi. org/10.31857/S2686740020050144


Review

For citations:


Gromov V., Porfir’ev M., Peregudov O., Serebryakova A. BEHAVIOR OF CEMENTITE IN PERLITE STEEL UNDER DEFORMATION. Bulletin of the Siberian State Industrial University. 2023;(4):9-20. (In Russ.) https://doi.org/10.57070/2307-4497-2023-4(46)-9-20

Views: 15


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304 - 4497 (Print)
ISSN 2307-1710 (Online)