Preview

Bulletin of the Siberian State Industrial University

Advanced search

EVALUATION OF TITANIUM DIOXIDE NANOTUBE STRUCTURE BY ULTRASONIC-HYDROTHERMAL SYNTHESIS METHOD FOR CORROSION INHIBITOR STORAGE APPLICATION

https://doi.org/10.57070/2304-4497-2025-3(53)-51-62

Abstract

This study presents the synthesis of TiO2 nanotubes using a combined hydrothermal–ultrasonic approach with short hydrothermal durations ranging from 4 to 10 hours, aiming to evaluate the controllability of morphology and crystalline structure for anticorrosion applications. Ultrasonic pretreatment was applied to enhance precursor dispersion and promote the formation of ordered nanotubular structures, thereby reducing synthesis time compared with conventional hydrothermal processes. The obtained materials were characterized using several complementary techniques: scanning electron microscopy (SEM) to analyze morphology and nanotube distribution, Raman spectroscopy and X-ray diffraction (XRD) to assess phase composition and crystallinity, and Fourier-transform infrared spectroscopy (FTIR) to identify surface bonding features. The results revealed apparent differences in nanotube organization, crystallinity, and phase development depending on the reaction duration, confirming that synthesis time plays a decisive role in tailoring structural parameters. These findings demonstrate that the hydrothermal–ultrasonic method provides an efficient and versatile route for fabricating TiO2 nanotubes with tunable structural and functional properties. Furthermore, the synthesized nanostructures exhibit strong potential as carriers of corrosion inhibitors, enabling improved storage and controlled release within polymer-based protective coatings, thereby contributing to the development of next-generation anticorrosion technologies.

About the Authors

Van Zung Vu
Moscow Automobile and Road Construction State Technical University
Russian Federation

PhD student, Department of Structural Materials Technology, specialization



Huy Bach Nguyen
Moscow Automobile and Road Construction State Technical University

Student, Faculty of Energy and Environmental Engineering



Ravil I. Nigmetzyanov
Moscow Automobile and Road Construction State Technical University

Cand. Sci. (Eng.), Associate Professor, Department of Structural Materials Technology



References

1. Kasuga T., Hiramatsu M., Hoson A., Sekino T., Niihara K. Formation of titanium oxide nanotubes. Langmuir. 1998;14(12):3160–3163. https://doi.org/10.1021/la9713816

2. Cui L., Hui K.N., Hui K.S. et al. Facile microwave-assisted hydrothermal synthesis of TiO₂ nanotubes. Mater Lett. 2012;75:175–178. https://doi.org/10.1016/j.matlet.2012.02.004

3. Dimas B.V., Hernández Pérez I., Febles V.G. et al. Atomic-scale investigation on the evolution of TiO₂-anatase prepared by a sonochemical route and treated with NaOH. Materials. 2020;13(3):685. https://doi.org/10.3390/ma13030685

4. Alkanad K., Hezam A., Al-Zaqri N. et al. One-step hydrothermal synthesis of anatase TiO₂ nanotubes for efficient photocatalytic CO₂ reduction. ACS Omega. 2022;7(43):38686–38699. https://doi.org/10.1021/acsomega.2c04211

5. Ou H.H., Lo S.L. Review of titania nanotubes synthesized via the hydrothermal treatment: Fabrication, modification, and application. Sep Purif Technol. 2007;58(1):179–191.

6. https://doi.org/10.1016/j.seppur.2007.07.017

7. Zavala M.Á.L., Morales S.A.L., Ávila-Santos M.S. Synthesis of stable TiO₂ nanotubes: effect of hydrothermal treatment, acid washing and annealing temperature. Heliyon. 2017;3(11):e00456. https://doi.org/10.1016/j.heliyon.2017.e00456

8. Shi Y., Li R., Lei Z. Influences of synthetic parameters on morphology and growth of high entropy oxide nanotube arrays. Coatings. 2022;13(1):46. https://doi.org/10.3390/coatings13010046

9. Parinov I.A., Chang S.H., Gupta V.K., editors. Advanced Materials: Proceedings of the International Conference on “Physics and Mechanics of New Materials and Their Applications.” Springer International Publishing; 2018.

10. Liu N., Chen X., Zhang J., Schwank J.W. A review on TiO₂-based nanotubes synthesized via hydrothermal method: Formation mechanism, structure modification, and photocatalytic applications. Catal Today. 2014;225:34–51. https://doi.org/10.1016/j.cattod.2013.10.090

11. Niu L., Zhao X., Tang Z. et al. Difference in performance and mechanism for methylene blue when TiO₂ nanoparticles are converted to nanotubes. J. Clean Prod. 2021;297:126498. https://doi.org/10.1016/j.jclepro.2021.126498

12. Muresan L.M. Nanocomposite coatings for anti-corrosion properties of metallic substrates. Materials. 2023;16(14):5092. https://doi.org/10.3390/ma16145092

13. Kumar N., Sharma A. Surface coatings and functionalization strategies for corrosion mitigation. American Chemical Society. 2022;291–316. https://doi.org/10.1021/bk-2022-1418.ch014

14. Kumar S.S., Kakooei S. Container-based smart nanocoatings for corrosion protection. In: Corrosion Protection at the Nanoscale. 2020;403–421. https://doi.org/10.1016/B978-0-12-819359-4.00021-0

15. Ubaid F., Naeem N., Shakoor R.A., Kahraman R., Mansour S., Zekri A. Effect of concentration of DOC loaded TiO₂ nanotubes on the corrosion behavior of smart coatings. Ceram Int. 2019;45(8):10492–10500. https://doi.org/10.1016/j.ceramint.2019.02.111

16. Wu V.Z., Nigmetzyanov R.I. The Review of corrosion protection by nanotubes TiO2 and BTA/TiO2 nanotubes dispersed in Epoxy and proposed method for preparation of anti-corrosion coating from this material assisted by ultrasound. Chem Bull. 2025;8(1):2.

17. https://doi.org/10.58224/2619-0575-2025-8-1-2

18. Rajamahendran T., Kasinathan K., Sivakumar R. et al. Effects of hydrothermal temperature and time on the structural and morphology of TiO₂ nanotubes and functionalization with sulfonic acid. AIP Conf Proc. 2021;2401(1). https://doi.org/10.1063/5.0072985

19. Chen H., Chen D., Bai L., Shu K. Hydrothermal synthesis and electrochemical properties of TiO₂ nanotubes as an anode material for lithium ion batteries. Int J Electrochem Sci. 2018;13(2):2118–2125. https://doi.org/10.20964/2018.02.75

20. Ohsaka T., Izumi F., Fujiki Y. Raman spec-trum of anatase, TiO₂. J. Raman Spectrosc. 1978;7(6):321–324. https://doi.org/10.1002/jrs.1250070606

21. Frank O., Zukalova M., Laskova B. et al. Raman spectra of titanium dioxide (anatase, rutile) with identified oxygen isotopes (16, 17, 18). Phys Chem Chem Phys. 2012;14(42):14567–14572. https://doi.org/10.1039/C2CP42763J

22. Ubaid F., Naeem N., Shakoor R.A. et al. Effect of concentration of DOC loaded TiO₂ nanotubes on the corrosion behavior of smart coatings. Ceram Int. 2019;45(8):10492–10500.

23. https://doi.org/10.1016/j.ceramint.2019.02.111

24. Rao B.M., Roy S.C. Anatase TiO₂ nanotube arrays with high temperature stability. RSC Adv. 2014;4(72):38133–38139. https://doi.org/10.1039/C4RA05882H

25. Lacks D.J., Gordon R.G. Crystal-structure calculations with distorted ions. Phys Rev B. 1993;48(5):2889. https://doi.org/10.1103/PhysRevB.48.2889

26. Swamy V., Dubrovinsky L.S., Dubrovinskaia N.A. et al. Size effects on the structure and phase transition behavior of baddeleyite TiO₂. Solid State Commun. 2005;134(8):541–546.

27. https://doi.org/10.1016/j.ssc.2005.02.035

28. Dimitrijevic N.M., Saponjic Z.V., Rabatic B.M., Poluektov O.G., Rajh T. Effect of size and shape of nanocrystalline TiO₂ on photo-generated charges: an EPR study. J. Phys Chem C. 2007;111(40):14597–14601. https://doi.org/10.1021/jp0756395

29. Niu L., Zhao X., Tang Z., Lv H., Wu F., Wang X. et al. Difference in performance and mechanism for methylene blue when TiO₂ nanoparticles are converted to nanotubes. J. Clean Prod. 2021;297:126498.

30. https://doi.org/10.1016/j.jclepro.2021.126498

31. Bunaciu A.A., Udriştioiu E.G., Aboul-Enein H.Y. X-ray diffraction: instrumentation and applications. Crit Rev Anal Chem. 2015;45(4):289–299. https://doi.org/10.1080/10408347.2014.949616

32. Jin S., Smith E.M. Raman Spectroscopy and X-Ray Diffraction: Phase Identification of Gem Minerals and Other Species. Gems Gemol. 2024;60(4):518–535.

33. https://doi.org/10.5741/GEMS.60.4.518


Review

For citations:


Vu V., Nguyen H., Nigmetzyanov R. EVALUATION OF TITANIUM DIOXIDE NANOTUBE STRUCTURE BY ULTRASONIC-HYDROTHERMAL SYNTHESIS METHOD FOR CORROSION INHIBITOR STORAGE APPLICATION. Bulletin of the Siberian State Industrial University. 2025;(3):51-62. (In Russ.) https://doi.org/10.57070/2304-4497-2025-3(53)-51-62

Views: 38


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304 - 4497 (Print)
ISSN 2307-1710 (Online)