Preview

Bulletin of the Siberian State Industrial University

Advanced search

INFLUENCE OF ANNEALING TEMPERATURE AND PULSED MAGNETIC FIELD ON PHYSICAL PROPERTIES OF ALUMINUM ALLOY AK9 DURING ARTIFICIAL AGING

https://doi.org/10.57070/2304-4497-2025-3(53)-43-50

Abstract

An urgent task of physical materials science is to improve the properties of metals and metal alloys necessary for operation. Despite significant progress in metal science and metallurgy, in particular in the creation of new alloys superior in their properties to alloys of the Al ‒ Si system, silumins will occupy a leading position in industry for a long time, which is associated with their manufacturability when used in almost all types of casting. Various methods of heat treatment are used to improve the structure and physico-mechanical properties of metal alloys. One of them is the technology of artificial aging, with the help of which it is possible to significantly change the physical and mechanical properties of metal alloys. The results of a comprehensive experimental study of the effect of a pulsed magnetic field on the aging process of AK9 aluminum alloy are presented. Information is provided on the chemical composition, modes of thermal and thermomagnetic treatments, and the main experimentally observed patterns of changes in microhardness and fine structure parameters of AK9 aluminum alloy aged for 4 hours at temperatures from 120 to 250 °C in a pulsed magnetic field with an amplitude of 557.2 kA/m and in its absence. It was found that the pulsed magnetic field significantly affects the strength properties and structure of the AK9 aluminum alloy, while it does not change the stages of the aging process. When a pulsed magnetic field is applied, the average size of coherent scattering blocks becomes larger, and the dislocation density and relative microdeformation are smaller than in its absence, which indicates the formation of a less pronounced crystal lattice. 

About the Authors

Yulia V. Osinskaya
Samara National Research University
Russian Federation

Cand. Sci. (Eng.), Head of the Department of Solid State Physics and Nonequilibrium Systems



Selimat G. Magamedova
Samara National Research University

assistant, Department of Solid State Physics



Sergey V. Voronin
Samara National Research University

Cand. Sci. (Eng.), Associate Professor of the Department of Metal Technology and Aviation Materials Science



References

1. Sharipov K.A., Ibrakhimov F.F. Research and selection of optimal parameters of the process of artificial aging of low-alloy aluminum alloys of the AlMgSi system according to the hardness cri-terion. Universum: tekhnicheskie nauki. 2023;5-3(110):15–18. (In Russ.).

2. https://doi.org/10.32743/UniTech.2023.110.5.15534

3. Kablov E.N., Belov E.V., Trapeznikov A.V., Leonov A.A., Zaitsev D.V. Features of hardening and kinetics of aging of cast aluminum high-strength alloy based on the Al-Si-Cu-Mg system. Aviatsionnye materialy i tekhnologii. 2021;2(63):24–34. (In Russ.). https://doi.org/10.18577/2713-0193-2021-0-2-24-34

4. Nosova E.A., Amosov A.P. Study of crystal lat-tice distortions in a solid solution of aluminum alloy D16 (AA2024) after annealing and aging. Polzunovskii vestnik. 2022;4-2:125–132. (In Russ.). https://doi.org/10.25712/ASTU.2072-8921.2022.4.2.016

5. Zi Y., John B. Natural and artificial ageing in aluminium alloys – the role of excess vacancies. Acta Materialia. 2021;215:1–11.

6. https://doi.org/10.1016/j.actamat.2021.117014

7. Benarieb I., Puchkov Yu.A., Sbitneva S.V., Zaitsev D.V. Study of the decomposition of su-persaturated solid solution during quench cooling of sheets of aluminum alloy Al-Mg-Si. Fizika metallov i metallovedenie. 2023;124(9):838–845. (In Russ.). https://doi.org/10.31857/S0015323023600843

8. Honggang Zhang, Rui Chen, Xiaomei Gu. Effect of aging process on precipitated phase and prop-erties of mechanical extruded aluminum alloy. Journal of Measurements in Engineering. 2024;12(2):270–283. https://doi.org/10.21595/jme.2024.23724

9. Andoko А., Yanuar R., Puspitasari P., Ariestoni T.B., The effects of artificial-aging temperature on tensile strength, hardness, microstructure, and fault morphology in AlSiMg. Journal of Achievements of Materials and Manufacturing Engineering. 2020;2(98):49–55.

10. https://doi.org/10.5604/01.3001.0014.1480

11. Yang Z., Jiang X.H., Zhang X.-P., Liu M., Liang Z.Q., Leyvraz D., Banhart J. Natural ageing clustering under different quenching conditions in an Al ‒ Mg ‒ Si alloy. Acta Materialia. 2021; 215:1–13. https://doi.org/10.1016/j.actamat.2021.117014

12. Zagulyaev D.V., Konovalov S.V., Gromov V.E. The influence of weak magnetic fields on the mi-crohardness of polycrystalline aluminum. Vestnik YuUrGU. Seriya «Matematika. Mekhanika. Fizi-ka». 2010;9:53–56. (In Russ.).

13. Morgunov R.B., Valeev R.A., Skvortsov A.A., Korolev D.V., Piskorskii V.P., Kunitsyny E.I., Kucheryaev V.V., Koplak O.V. Magnetoplastic and magnetomechanical effects in aluminum al-loys with magnetostrictive microinclusions. Trudy VIAM. 2019;10(82):3–13. (In Russ.). https://doi.org/10.18577/2307-6046-2019-0-10-3-13

14. Jun L., Hongyun L., Chu L., Tianshu Z., Runze W., Yue M. Effect of magnetic field on precipitation kinetics of an ultrafine grained Al – Zn – Mg – Cu alloy. Materials Science and Engineering: A. 2020;798:139990. https://doi.org/10.1016/j.msea.2020.139990

15. Koch C.C. Experimental evidence for magnetic or electric field effects on phase transformations. Materials Science and Engineering: A. 2000;287:213–218. https://doi.org/10.1016/S0921-5093(00)00778-4

16. Aristova N.A., Kolobnev I.F. Heat treatment of cast aluminum alloys. Moscow: Metallurgiya. 1977:144. (In Russ.).

17. Belyaev A.I., Bochvar O.S., Buinov N.N., Kolobnev N.I., Kolpachev A.A., Kostyukov L.A., Pokhodaev K.S., Senatorova O.G., Romanova R.R., Tkachenko E.A., Fridlyander I.N. Metallurgy of aluminum and its alloys. Moscow: Metallurgiya. 1983:280. (In Russ.).

18. Osinskaya Yu.V., Magamedova S.G., Pokoev A.V. The influence of the amplitude of the pulsed magnetic field on the parameters of the magnetoplastic effect in the aged aluminum alloy Al ‒ Si ‒ Cu ‒ Fe. Poverkhnost'. Rentgenovskie, sinkhrotronnye i neitronnye issledovaniya. 2024; 1:17–22. (In Russ.).

19. https://doi.org/10.31857/S1028096024010031

20. Osinskaya Yu.V., Pokoev A.V., Magamedova S.G. The influence of constant magnetic field intensity on the phase formation process in aged aluminum alloy Al ‒ Si ‒ Cu ‒ Fe. Poverkhnost'. Rentgenovskie, sinkhrotronnye i neitronnye issledovaniya. 2022;2:80–84. (In Russ.).

21. https://doi.org/10.31857/S1028096022020091

22. Osinskaya Yu.V., Pokoev A.V., Magamedova S.G. Study of pulsed magnetic field on aging of aluminum alloy Al–Si–Cu–Fe. Bulletin of the Russian Academy of Sciences. Series Obraz. 2021;85.7:1018–1023. (In Russ.). https://doi.org/10.31857/S0367676521070176

23. Geller Yu.A. Materials Science. Moscow: Metalllurgiya, 1989:456. (In Russ.).

24. Gorelik S.S., Skakov Yu.A., Rastorguev L.N. X-ray and electron microscopic analysis. Moscow: MISIS, 2002:360. (In Russ.).

25. Semenova O.R. X-ray diffraction study of fine structure of solids. Perm': Perm State National Research University. 2018:96. (In Russ.).

26. Volkov N.V., Skrytnyi V.I., Filippov V.P., Yal'tsev V.N. Methods of studying the structural and phase state of materials. Moscow: MIFI. 2008:808. (In Russ.).


Review

For citations:


Osinskaya Yu., Magamedova S., Voronin S. INFLUENCE OF ANNEALING TEMPERATURE AND PULSED MAGNETIC FIELD ON PHYSICAL PROPERTIES OF ALUMINUM ALLOY AK9 DURING ARTIFICIAL AGING. Bulletin of the Siberian State Industrial University. 2025;(3):43-50. (In Russ.) https://doi.org/10.57070/2304-4497-2025-3(53)-43-50

Views: 9


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304 - 4497 (Print)
ISSN 2307-1710 (Online)