Preview

Bulletin of the Siberian State Industrial University

Advanced search

CHANGING OF MECHANICAL PROPERTIES OF CANTOR ALLOY DURING ALLOYING

https://doi.org/10.57070/2304-4497-2024-2(48)-69-78

Abstract

The prospects for using Cantor's high-entropy alloy CoCrFeNiMn in various high-tech industries are associated with a good combination of strength and plastic properties. Since 2004, when the Cantor alloy was first created and studied, a large amount of research has been carried out in leading scientific centers around the world on the effects of heat treatment and other methods of improving its mechanical properties. Over the past five years, the scientific school of SibSIU has been solving the problem of forming a high level of functional properties of high-entropy alloys by creating a nanocrystalline state of the surface and strengthening it by electron beam processing. The article notes the relevance of the traditional way of changing the properties of alloys by alloying. A brief review of the work of recent years by foreign researchers on modifying (improving) the mechanical properties of the Cantor alloy by alloying a number of elements has been carried out. Particular attention is paid to the alloying of Al, Nb, and Zr, which are widely used in the alloying of traditional alloys. When analyzing aluminum alloying work, it was noted that the replacement of manganese with aluminum provides microstructural stability and high functional properties over a wide temperature range. Attention is drawn to a promising strategy for producing Cantor's alloy with Al from metallurgical and mechanical engineering waste. This expands the range of practical applications of Cantor alloy. The advantages of Zr alloying are noted: fast induction melting, good chemical homogeneity, and a low melting point due to the formation of Zr eutectic with all components of the Cantor alloy. An increase in the mole fraction of Nb significantly increases the strength properties of the alloy and its hardness. This is largely due to the formation of the Laves phase. A good combination of strength and ductility during microalloying of Nb-carbon-containing Cantor alloy is associated with the formation of a fine-grained structure. Various strengthening mechanisms are reviewed and discussed.

About the Authors

Mikhail O. Efimov
Siberian State Industrial University
Russian Federation

Candidate of the Department of Natural Sciences named after Professor V.M. Finkel



Viktor E. Gromov
Siberian State Industrial University

Dr. Sci. (Phys.-Math.), Prof., Head of the Department of Science named after V.M. Finkel’



Sergei V. Konovalov
Siberian State Industrial University

Dr. Sci. (Eng.), Professor, Vice-Rector for Research and Innovation



Irina A. Panchenko
Siberian State Industrial University

Cand. Sci. (Eng.), Associate Professor, Head of the Scientific Laboratory of Electron Microscopy and Image Processing



Aleksandr P. Semin
Siberian State Industrial University

Cand. Sci. (Eng.), Senior Researcher, Associate Professor of the Department of Engineering Structures, Building Technologies and Materials



References

1. Gromov V.Е., Konovalov S.V., Ivanov Yu.F., Osintsev K.A. Structure and properties of high-entropy alloys. Springer. Advanced struc-tured materials. 2021;107:110.

2. https://doi.org/10.1007/978-3-030-78364-8

3. Cantor B., Chang I.T.H., Knight P., Vincent A.J.B. Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering: A. 2004;375-377:213–218.

4. https://doi.org/10.1016/j.msea.2003.10.257

5. Osintsev K.A., Gromov V.E., Konovalov S.V., Ivanov Yu.F., Panchenko I.A. High-entropy alloys: Structure, mechanical proper-ties, deformation mechanisms and application. Izvestiya. Ferrous Metallurgy. 2021;64(4):249‒258. (In Russ.). EDN: SPVHFX;

6. https://doi.org/10.17073/0368-0797-2021-4-249-258

7. Gromov V.E., Rubannikova Yu.A., Konovalov S.V., Osintsev  K.A., Vorob’ev S.V. Generation of increased mechanical properties of Cantor high entropy alloy. Izvestiya. Ferrous Metal-lurgy. 2021;64(8):599-605. (In Russ.). EDN: NREFWK.

8. https://doi.org/10.17073/0368-0797-2021-8-599-605

9. Ivanov Yu.F., Gromov V.E., Efimov M.O., Shlya-rova Yu.A., Panchenko I.A., Konovalov S.V. The structure of the surfacing contact zone is a substrate subjected to electron beam pro-cessing. Pis'ma v zhurnal tekhnicheskoi fiziki. 2023;49(6):26‒31. (In Russ.). EDN: DZFBKL; https://doi.org/10.21883/PJTF.2023.06.54813.19410

10. Ivanov Yu.F., Gromov V.E., Konovalov S.V., Shu-gurov V.V., Efimov M.O., Teresov A.D., Petrikova E.A., Panchenko I.A. Shlyarova Yu.A. Structure and properties of a high-entropy alloy subject-ed to electron-ion-plasma treatment. Problemy chernoi metallurgii i materialovedeniya. 2022;(4):102‒116. (In Russ.). EDN: FBKTJE;

11. https://doi.org/10.54826/19979258_2022_4_102

12. Senkov O.N., Zhang C., Pilchak A.L., Payton E.J., Woodward C., Zhang F. CALPHAD-aided de-velopment of quaternary multi-principal ele-ment refractory alloys based on NbTiZr. Jour-nal of Alloys and Compounds. 2019;783:729‒742. https://doi.org/10.1016/j.jallcom.2018.12.325

13. Menou E., Tancret F., Toda-Caraballo I., Ramstein G., Castany P., Bertrand E., Gautier N., Rivera Díaz-Del- Castillo P.E.J. Computa-tional design of light and strong high entropy alloys (HEA): Obtainment of an extremely high specific solid solution hardening. Scripta Materialia. 2018;156:120‒123.

14. https://doi.org/10.1016/j.scriptamat.2018.07.024

15. Tapia A.J.S.E, Yim D., Kim H.S., Lee B.-J. An approach for screening single phase high-entropy alloys using an in-house thermody-namic database. Intermetallics. 2018;101:56‒63. https://doi.org/10.1016/j.intermet.2018.07.009

16. Kumar Soni V., Kumar Sinha A. Effect of al-loying elements, phases and heat treatments on properties of high-entropy alloys: A Re-view. Transactions of the Indian Institute of Metals. 2023;76(4):897–914 https://doi.org/10.1007/s12666-022-02777-1

17. Kao Yu.F., Chen T.J., Chen S.K.,Ye J.V. Mi-crostructure and mechanical property of as-cast, -homogenized, and -deformed Alx-CoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys. Journal of Alloys and Compounds. 2009;488(1):57–64.

18. https://doi.org/10.1016/j.jallcom.2009.08.090

19. Fan K.K., Li B.S., Zhang Y.J. Influence of Al and Cu elements on the microstructure and properties of (FeCrNiCo)AlxCuy high-entropy alloys. Journal of Alloys and Compounds. 2014;614: 203–210.

20. https://doi.org/10.1016/j.jallcom.2014.06.090

21. Moravcik I., Cizek J., Kovacova Z., Nejez-chlebova J., Kitzmantel M., Neubauer E., Ku-bena I., Hornik V., Dlouhy I. Mechanical and microstructural characterization of powder metallurgy CoCrNi medium entropy alloy. Materials Science and Engineering: A. 2017;701:370–380. https://doi.org/10.1016/j.msea.2017.06.086

22. Ge W., Wu B., Wang S., Xu S., Shang C., Zhang Z., Wang Y. Characterization and properties of CuZrAlTiNi high entropy alloy coating obtained by mechanical alloying and vacuum hot pressing sintering. Advanced Powder Technology. 2017;28:2556–2563.

23. https://doi.org/10.1016/j.apt.2017.07.006

24. Karpets M.V., Myslyvchenko O.M., Makarenko O.S., Gorban V.F., Krapivka M.O. Mechanical Properties and Formation of Phases in High-Entropy CrFeNiCuCoAlx Alloys. Powder Met-allurgy and Metal Ceramics. 2015;54:344–352.

25. https://doi.org/10.1007/s11106-015-9720-9

26. You D., Yang G., Choa Y.H., Kim J.K. Crack-resistant σ/FCC interfaces in the Fe40Mn40Co10Cr10 high entropy alloy with the dispersed σ-phase. Materials Science and Engineering: A. 2022;831:142039.

27. https://doi.org/10.1016/j.msea.2021.142039

28. Cao Z.H., Zhai G.Y., Ma Y.J., Ding L.P., Li P.F., Liu H.L., Lu H.M., Cai Y.P., Wang G.J., Meng X.K. Evolution of interfacial character and its in-fluence on strain hardening in dual-phase high entropy alloys at nanoscale. International Journal of Plasticity. 2021;145:103081.

29. https://doi.org/10.1016/j.ijplas.2021.103081

30. Nong Zh., Zhu J., Yang X., Yu H., Lai Z., Wuha J. Effects of annealing on microstruc-ture, mechanical and electrical properties of AlCrCuFeMnTi high entropy alloy. Journal of Wuhan University of Technology-Mater. Sci. Ed. 2013;28:1196–1200.

31. https://doi.org/10.1007/s11595-013-0844-9

32. Chao Q., Joseph J., Annasamy M., Hodgson P., Barnett M.R., Fabijanic D. AlxCoCrFeNi high entropy alloys from metal scrap: Micro-structure and mechanical properties. Journal of Alloys and Compounds. 2024;976:173002.

33. https://doi.org/10.1016/j.jallcom.2023.173002

34. Colombini E., Garzoni A., Giovanardi R., Ve-ronesi P., Casagrande A. Al, Cu and Zr addi-tion to High Entropy Alloys: The Effect on Recrystallization Temperature. Materials Sci-ence Forum. 2018;941:1137‒1142.

35. https://doi.org/10.4028/www.scientific.net/MSF.941.1137

36. Peng S., Lu Z., Gao S., Li H. Improved micro-structure and mechanical properties of ODS-CoCrFeNiMn high entropy alloys by different Ti, Zr and Y2O3 addition. Journal of Alloys and Compounds. 2023;935(2):168166.

37. https://doi.org/10.1016/j.jallcom.2022.168166

38. Huo W., Zhou H., Fang F., Xie Z., Jiang J. Microstructure and mechanical properties of CoCrFeNiZrx eutectic high-entropy alloys. Materials & Design. 2017;134:226–233.

39. https://doi.org/ 10.1016/j.matdes.2017.08.030

40. Campari E.G., Casagrande A., Colombini E., Gualtieri M. L. Veronesi P. The effect of Zr addition on melting temperature, microstruc-ture, recrystallization and mechanical proper-ties of a Cantor high entropy alloy. Materials. 2021;14(20):5994. https://doi.org/10.3390/ma14205994

41. Liu W.H., He J.Y., Huang H.L., Wang X., Lu Z.P., Liu C.T. Effects of Nb additions on the microstruc-ture and mechanical property of CoCrFeNi high-entropy alloys. Intermetallics. 2015;60:1–8. https://doi.org/10.1016/J.INTERMET.2015.01.004

42. He F., Wang Z., Cheng P., Wang Q., Li J., Dang Y., Wang J., Liu C.T. Designing eutectic high en-tropy alloys of CoCrFeNiNbx. Journal of Al-loys and Compounds. 2016;656:284–289.

43. https://doi.org/10.1016/j.jallcom.2015.09.153

44. Ma S.G., Zhang Y. Effect of Nb addition on the microstructure and properties of AlCo-CrFeNi high-entropy alloy. Materials Science and Engineering: A. 2012; 532: 480–486.

45. https://doi.org/10.1016/j.msea.2011.10.110

46. Abbasi E., Dehghani K. Phase prediction and microstructure of centrifugally cast non-equiatomic Co‒Cr‒Fe‒Mn‒Ni(Nb,C) high en-tropy alloys. Journal of Alloys and Com-pounds. 2019;783:292–299. https://doi.org/10.1016/j.jallcom.2018.12.329

47. Qin G., Li Z., Chen R., Zheng H., Fan C., Wang L., Su Y., Ding H., Guo J., Fu H. CoCrFeMnNi high-entropy alloys reinforced with Laves phase by adding Nb and Ti elements. Journal of Materials Research. 2019;34(6):1–10.

48. https://doi.org/10.1557/jmr.2018.468

49. Li R., Zhang V., Zhang Yu., Liau P.K. The effects of phase transformation on the microstructure and mechanical behavior of FeNiMnCr.75Alx high-entropy alloys. Materials Science and Engi-neering. A. 2018;138(725):138–147.

50. https://doi.org/10.1016/j.msea.2018.04.007

51. Zhang L.J., Zhang M.D., Zhou Z., Fan J.T., Cui P., Yu P. F., Jing C., Ma M. Z., Liau P.K., Li G., Liu R.P. Effects of rare-earth element, Y, ad-ditions on the microstructure and mechanical properties of CoCrFeNi high entropy alloy. Materials Science and Engineering; A. 2018;437(725):437–446 https://doi.org/10.1016/j.msea.2018.04.058

52. Shun T., Chang L., Shiu M. Microstructure and mechanical properties of multiprincipal component CoCrFeNiMox alloys. Materials Characterization. 2012;70:63–67.

53. https://doi.org/10.1016/j.matchar.2012.05.005

54. Salishchev G.A.,Tikhonovsky M.A., Shaysul-tanov D.G., Stepanov N.D., Kuznetsov A.V., Kolodiy I.V.,Tortika A.S., Senkov O. N. Ef-fect of Mn and V on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system. Journal of Alloys and Com-pounds. 2014;591:11–21.

55. http://doi.org/10.1016/j.jallcom.2013.12.210

56. Shun T.T., Chang L.Y., Shiu M.H. Micro-structures and mechanical properties of mul-tiprincipal component CoCrFeNiTix alloys. Materials Science and Engineering. 2012;556:170–174. https://doi.org/10.1016/j.msea.2012.06.075

57. Ai C., He F., Guo M., Zhou J., Wang Z., Yuan Z., Guo Y., Liu Y., Liu L. Alloy design, micro-mechanical and macromechanical properties of CoCrFeNiTax eutectic high entropy alloys. Journal of Alloys and Compounds. 2018;735:2653–2662.

58. https://doi.org/10. 1016/j.jallcom.2017.12.015

59. Nagase T., Kakeshita T., Matsumura K., Nakazawa K., Furuya S., Ozoe N., Yoshino K. Development of Fe‒Co‒Cr-Mn-Ni-C high en-tropy cast iron (HE cast iron) available for casting in air atmosphere. Materials and De-sign. 2019;184:108172.

60. https://doi. org/10.1016/j.matdes.2019.108172

61. He F., Wang Z., Cheng P., Wang Q., Li J., Dang Y., Wang J., Liu C.T. Designing eutectic high en-tropy alloys of CoCrFeNiNbx. Journal of Al-loys and Compounds. 2016;656:284–289.

62. https://doi.org/10.1016/j.jallcom.2015.09.153


Review

For citations:


Efimov M., Gromov V., Konovalov S., Panchenko I., Semin A. CHANGING OF MECHANICAL PROPERTIES OF CANTOR ALLOY DURING ALLOYING. Bulletin of the Siberian State Industrial University. 2024;(2):69-78. (In Russ.) https://doi.org/10.57070/2304-4497-2024-2(48)-69-78

Views: 28


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304 - 4497 (Print)
ISSN 2307-1710 (Online)