PERSPECTIVE TRENDS OF CREATION AND APPLICATION: HIGH-ENTROPY GLASSES
https://doi.org/10.57070/2304-4497-2024-2(48)-61-68
Abstract
One of the main tasks of modern physical materials science to develop and study high-entropy alloys of the latest generation is formulated. A brief review of recent publications on promising areas of creation and application of high-entropy alloys is given. A set of high performance characteristics is identified for high-entropy alloys for use in modern science-intensive industries: wear resistance, strength and impact strength, chemical, radiation and corrosion resistance, low density, super plasticity and superconductivity, high and low thermal conductivity, diffusion resistance, low temperature coefficient of resistance, environmental friendliness, etc. The areas of promising applications of high-entropy alloys in nuclear reactors, aerospace engines, gas and oil pipelines, offshore structures, computers and electronic devices are indicated. It is noted that many high-entropy alloys can be used in dual-use products. As an example, a proposal for the creation of thin-film high-resistive materials with a low temperature coefficient of resistance by the spinning method is considered. A tape made of the high-entropy Cantor’s alloy of a non-equiatomic composition has been obtained and its properties have been studied. An assumption about the further development of high-entropy alloys has been made and substantiated.
About the Authors
Yurii F. IvanovRussian Federation
Dr. Sci. (Phys.-Math.), Prof., Chief Researcher, Institute of High-Current Electronics
Aleksandr P. Semin
Cand. Sci.(Eng.)., Ass. prof. Chair of civil eng., sin. reseacher
Viktor E. Gromov
Dr. Sci. (Phys.-Math.), Prof., Head of the Chair of Science named after V.M. Finkel’
Sergey V. Borovskii
research fellow of the Chair of Science named after V.M. Finkel’
Aleksei B. Yur’ev
Dr. Sci. (Eng.), Rector
Sergey S. Minenko
research fellow of the Chair of Science named after V.M. Finkel’
References
1. Yu C., Dai Z.-W., Jiang J.-Z. High entropy metallic glasses: Glass formation, crystalliza-tion and properties. Journal of Alloys and Compounds. 2021;866:158852. https://doi.org/10.1016/j.jallcom.2021.158852
2. Rogachev A.S. Structure, stability, and prop-erties of high-entropy alloys. The physics of metals and metallography. 2020;121(8):733–764. EDN: TYMYVL. https://doi.org/10.1134/S0031918X20080098
3. Khan M.M., Nemati A., Rahman Z.U., Shah U.H., Asgar H., Haider W. Recent advancements in bulk metallic glasses and their applications: a review. Critical Reviews in Solid State and Ma-terials Sciences. 2018;43(3):233–268.
4. http://dx.doi.org/10.1080/10408436.2017.1358149
5. Zhang Y., Zuo T.T., Tang Z., Gao M.C., Dahmen K.A., Liaw P.K., Lu Z.P. Microstruc-tures and properties of high-entropy alloys. Progress in Materials Science. 2014;61:1–93.
6. https://doi.org/10.1016/J.PMATSCI.2013.10.001
7. Cantor B. Multicomponent and high entropy alloys. Entropy. 2014;16(9):4749–4768.
8. http://dx.doi.org/10.3390/e16094749
9. Miracle D.B., Senkov O.N. A critical review of high entropy alloys and related concepts. Acta Materialia. 2017;122:448–511.
10. http://dx.doi.org/10.1016/j.actamat.2016.08.081
11. Zhang W., Liaw P.K., Zhang Y. Science and technology in high-entropy alloys. Science China Materials. 2018;61(1):2–22.
12. https://doi.org/10.1007/s40843-017-9195-8
13. Gorban’ V.F., Krapivka N.A., Firstov S.A. High-entropy alloys – electron concentration – phase composition – lattice parameter-properties. The Physics of Metals and Metal-lography. 2017;118(10):1017–1029. http://dx.doi.org/10.1134/S0031918X17080051
14. Ivchenko M.V., Pushin V.G., Wanderka N. High-entropy equiatomic alloys FlCrFeCo-NiCu: Hypotheses and experimental facts. Technical Physics. 2014;84:57–69.
15. http://dx.doi.org/10.1134/S1063784214020108
16. Yeh J.–W. Physical metallurgy of high-entropy alloys. JOM. 2015;67(10):2254–2261.
17. https://doi.org/10.1007/s11837-015-1583-5
18. Tsai M.–H., Yeh J.–W. High-entropy alloys: a critical review. Materials Research Letters. 2014;2(3):107–123. http://dx.doi.org/10.1080/21663831.2014.912690
19. Alaneme K.K., Bodunrin M.O., Oke S.R. Pro-cessing, alloy composition and phase transi-tion effect on the mechanical and corrosion properties of high entropy alloys: a review. Journal of Materials Research and Technology. 2016;5(4):384–393. http://dx.doi.org/10.1016/j.jmrt.2016.03.004
20. Murty B.S., Yeh J.W., Ranganathan S., Bhattacharjee P.P. High-Entropy Alloys. Sec-ond edition. Amsterdam: Elsevier. 2019:374. https://doi.org/10.1016/b978-0-12-816067-1.00006-0
21. Zhang Y. High-Entropy Materials. A brief in-troduction. Singapore: Springer Nature. 2019:159. http://dx.doi.org/10.1007/978-981-13-8526-1
22. Gromov V.E., Konovalov S.V., Ivanov Yu.F., Osintsev K.A. Structure and properties of High entropy alloys. Springer: Advanced structure materials. 2021;107:110.
23. http://dx.doi.org/10.1007/978-3-030-78364-8
24. Gromov V.E., Ivanov Yu.F., Osintsev K.A., Shlyarova Yu.A., Panchenko I.A. High entro-py alloys: Structure and properties. Moscow: RuScience. 2022;202. EDN: XMPWTH.
25. Jo Y.H., Doh K.–Y., Kim D.G., Lee K., Kim D.W., Sung H., Sohn S.S., Lee D., Kim H.S., Lee B.-J., Lee S. Cryogenic-temperature fracture toughness analysis of non-equiatomic V10Cr10Fe45Co20Ni15 high-entropy alloy. Journal of Alloys and Compounds. 2019;809:151864.
26. https://doi.org/10.1016/j.jallcom.2019.151864
27. Zhao R.–F., Ren B., Zhang G. –P., Liu Z.–X., Cai B., Zhang J.–J. CoCrxCuFeMnNi high-entropy alloy powders with superior soft mag-netic properties. Journal of Magnetism and Magnetic Materials. 2019;491:165574.
28. https://doi.org/10.1016/j.jmmm.2019.165574
29. Tian F., Zhao H., Wang Y., Chen N. Investigating effect of ordering onmagnetic-elastic property of FeNiCoCr medium-entropy alloy. Scripta Materialia. 2019;166:164–167. 236.
30. http://dx.doi.org/10.1016/j.scriptamat.2019.03.023
31. Zuo T., Gao M.C., Ouyang L., Yang X., Cheng Y., Feng R., Chen S., Liaw P.K., Hawk J.A., Zhang Y. Tailoring magnetic behavior of CoFeMnNiX (X 1/4 Al, Cr, Ga, and Sn) high entropy alloys by metal doping. Acta Materialia. 2017;130:10–18. http://dx.doi.org/10.1016/j.actamat.2017.03.013
32. Mishra R.K., Shahi R. A systematic approach for enhancing magnetic properties of CoCrFeNiTi-based high entropy alloys via stoichiometric variation and annealing. Jour-nal of Alloys and Compounds. 2020;821:153534.
33. http://dx.doi.org/10.1016/j.jallcom.2019.153534
34. Kalpajians S., Schmid S. Manufacturing Engi-neering and technology. Singapore: Prentice Hall. 2006:1299.
35. Yeh J.W. Recent progress in high entropy al-loys. Annales De Chimie – Science. 2006;31:633–648. http://dx.doi.org/10.3166/acsm.31.633-648
36. Lin R.Ch., Lee T.H., Wu D.H., Li Y.Ch., Study of thin film resistors prepared using NiCrSiLeTa High entropy alloys. Advanced in material science and engineering. 2015;2015:1–7.
37. https://doi.org/10.1155/2015/847191
38. Chen Yu., Dai Z.-W., Jiang, J.-Z. High metal-lic glasses: glass formation crystallization and properties. Journal of Alloys and Compounds. 2021;866:158852. https://doi.org/10.1016/j.jallcom.2021.158852
39. Zhang M., Gong P., Li N., Zheng G., Deng L., Jin J., Li Q., Wang X. Oxidation behavior of a Ti16.7Zr16.7Hf16.7Cu16.7Ni16.7Be16.7 high- entropy bulk metallic glass. Materials Letters. 2019;236:135–138. http://dx.doi.org/10.1016/j.matlet.2018.10.056
40. Gong P., Li F., Deng L., Wang X., Jin J. Re-search on nano-scratching behavior of TiZrHfBeCu(Ni) high entropy bulk metallic glasses. Journal of Alloys and Compounds. 2020;817:153240. http://dx.doi.org/10.1016/j.jallcom.2019.153240
41. Gong P., Li F., Deng L., Wang X., Jin J. Dy-namic mechanical relaxation behavior of Zr35Hf17.5Ti5.5Al12.5Co7.5Ni12Cu10 high entropy bulk metallic glass. Journal of Materi-als Science & Technology. 2021;83:248–255. https://doi.org/10.1016/j.jallcom.2019.153240
42. Li M., Guan H., Yang S., Ma X., Li Q. Minor Cr alloyed Fe–Co–Ni–P–B high entropy bulk metallic glass with excellent mechanical prop-erties. Materials Science and Engineering: A. 2021;805:140542. https://doi.org/10.1016/j.msea.2020.140542
43. Li M., Guan H., Yang S., Ma X., Li Q. Fe-based metallic glass reinforced FeCoCrNiMn high entropy alloy through selective laser melting. Journal of Alloys and Compounds. 2020;822:153695. https://doi.org/10.1016/j.msea.2020.140542
44. Pang C.M., Yuana C.C., Chena L., Xua H., Guoa K., Hea J.C., Lia Y., Weia M.S., Wang X.M., Huo J.T., Shen B.L. Effect of Yttrium addi-tion on magnetocaloric properties of Gd‒Co‒Al‒Ho high entropy metallic glasses. Journal of Non-Crystalline Solids. 2020;549:120354. http://dx.doi.org/10.1016/j.jnoncrysol.2020.120354
45. Zhao Y., Zhao P., Li W., Kou S., Jiang J., Mao X., Yang Z. The microalloying effect of Ce on the mechanical properties of medium entropy bulk metallic glass composites. Crys-tals. 2019;9(9):483. https://doi.org/10.3390/cryst9090483
46. Yang Y., Liu C.T. Size effect on stability of shear-band propagation in bulk metallic glass-es: an overview. Journal of Materials Science. 2012;47(1):55–67. http://dx.doi.org/10.1007/s10853-011-5915-8
47. Rashidi R.M., Malekan M., Gholamipour R. Crystal-lization kinetics of Cu47Zr47Al6 and (Cu47Zr47Al6)99Sn1 bulk metallic glasses. Journal of Non-Crystalline Solids. 2018;498:272–280. http://dx.doi.org/10.1016/j.jnoncrysol.2018.06.042
48. Shao L., Xue L., Wang Q., Ma K., Huang J., Shen B. Effects of Si addition on glass-forming ability and crystallization behavior of DyCoAl bulk metallic glass. Journal of Alloys and Compounds. 2021;874:159964.
49. http://dx.doi.org/10.1016/j.jallcom.2021.159964
Review
For citations:
Ivanov Yu., Semin A., Gromov V., Borovskii S., Yur’ev A., Minenko S. PERSPECTIVE TRENDS OF CREATION AND APPLICATION: HIGH-ENTROPY GLASSES. Bulletin of the Siberian State Industrial University. 2024;(2):61-68. (In Russ.) https://doi.org/10.57070/2304-4497-2024-2(48)-61-68