МЕТАЛЛИЧЕСКИЕ СТЕКЛА ИЗ ВЫСОКОЭНТРОПИЙНЫХ СПЛАВОВ: СВОЙСТВА, ОСОБЕННОСТИ ПОЛУЧЕНИЯ И ИСПОЛЬЗОВАНИЯ
https://doi.org/10.57070/2304-4497-2024-2(48)-10-22
Аннотация
Высокоэнтропийные сплавы (ВЭС) – это твердые растворы, содержащие пять или более основных элементов, находящихся в сплаве в равных или почти в равных пропорциях (ат. %). Концепция таких сплавов открывает новые пути для создания необычных металлических материалов с уникальными физическими и механическими свойствами, которые невозможно получить в известных сплавах, в составе которых обычно один основной элемент. В отдельную группу можно выделить металлические стекла (МС) на основе высокоэнтропийных сплавов (МС ВЭС). Металлические стекла – это материал, полученный резкой закалкой ВЭС из жидкого состояния и поэтому такие стекла имеют аморфную стеклоподобную структуру. Основными составляющими элементами МС ВЭС могут быть цирконий, медь, железо, никель, хром, иттрий, церий. Эти материалы весьма перспективны для применения в промышленности из-за их превосходных механических свойств, таких как высокая прочность (близка к теоретической прочности), износостойкость, твердость, исключительные магнитные свойства. Формирование, кристаллизация и кинетика этих материалов являются предметом пристального изучения. Металлические стекла ВЭС более устойчивы, по сравнению с обычными МС, за счет высокой конфигурационной энтропии. В настоящей работе представлен краткий обзор работ отечественных и зарубежных исследователей по различным аспектам металлических стекол. Показано, что изучение свойств МС ВЭС может обеспечить прорыв и новые подходы в формировании и изучении новых систем ВЭС, а также в возможности потенциального применения этих новых материалов.
Ключевые слова
Об авторах
Чжан ПэйРоссия
доктор, профессор, Школа материаловедения и инженерии
Юрий Федорович Иванов
д.ф.-м.н., профессор, главный научный сотрудник
Александр Петрович Семин
к.т.н., старший научный сотрудник, доцент кафедры инженерных конструкций, строительных технологий и материалов
Сергей Владимирович Боровский
научный сотрудник
Виктор Евгеньевич Громов
д.ф.-м.н., профессор, заведующий кафедрой естественнонаучных дисциплин им. профессора В.М. Финкеля
Виталий Владиславович Шляров
аспирант кафедры естественнонаучных дисциплин им. профессора В.М. Финкеля, научный сотрудник лаборатории электронной микроскопии и обработки изображений
Список литературы
1. Chen Yu., Dai Z.-W., Jiang J.-Z. High entro-py metallic glasses: Glass formation, crystalli-zation and properties. Journal of Alloys and Compounds. 2021;866:158852.
2. https://doi.org/10.1016/j.jallcom.2021.158852
3. Рогачев А.С. Структура, стабильность и свойства высокоэнтропийных сплавов. Физика металлов и металловедение. 2020;121(8):807–841. https://doi.org/10.31857/S0015323020080094
4. Zhang M., Gong P., Li N., Zheng G., Deng L., Jin J., Li Q., Wang X. Oxidation behavior of a Ti16.7Zr16.7Hf16.7Cu16.7Ni16.7Be16.7 high-entropy bulk metallic glass. Materials Letters. 2019;236:135–138. https://doi.org/10.1016/j.matlet.2018.10.056
5. Gong P., Li F., Deng L., Wang X., Jin J. Re-search on nano-scratching behavior of TiZrHfBeCu(Ni) high entropy bulk metallic glasses. Journal of Alloys and Compounds. 2020;817:153240. https://doi.org/10.1016/j.jallcom.2019.153240
6. Zhang L.T., Duan Y.J., Wada T., Kato H., Pelletier J.M., Crespo D., Pineda E., Qiao J.C. Dynamic mechanical relaxation behavior of Zr35Hf17.5Ti5.5Al12.5Co7.5Ni12Cu10 high entropy bulk metallic glass. Journal of Materi-als Science & Technology. 2021;83:248–255. https://doi.org/10.1016/j.jmst.2020.11.074
7. Li M., Guan H., Yang S., Ma X., Li Q. Minor Cr alloyed Fe–Co–Ni–P–B high entropy bulk metallic glass with excellent mechanical prop-erties. Materials Science and Engineering: A. 2021;805:140542. https://doi.org/10.1016/j.msea.2020.140542
8. Li N., Wu S., Ouyang D., Zhang J., Liu L. Fe-based metallic glass reinforced FeCoCrNiMn high entropy alloy through selective laser melting. Journal of Alloys and Compounds. 2020;822:153695. https://doi.org/10.1016/j.jallcom.2020.153695
9. Pang C.M., Yuan C.C., Chen L., Xu H., Guo K., He J.C., Li Y., Wei M.S., Wang X.M., Huo J.T., Shen B.L. Effect of Yttrium addi-tion on magnetocaloric properties of Gd-Co-Al-Ho high entropy metallic glasses. Journal of Non-Crystalline Solids. 2020;549:120354.
10. https://doi.org/10.1016/j.jnoncrysol.2020.120354
11. Zhao Y., Zhao P., Li W., Kou S., Jiang J., Mao X., Yang Z. The microalloying effect of Ce on the mechanical properties of medium entropy bulk metallic glass composites. Crys-tals. 2019;9(9):483. https://doi.org/10.3390/cryst9090483
12. Yang Y., Liu C.T. Size effect on stability of shear-band propagation in bulk metallic glass-es: an overview. Journal of Materials Science. 2012;47:55–67. https://doi.org/10.1007/s10853-011-5915-8
13. Rashidi R., Malekan M., Gholamipour R. Crystalliza-tion kinetics of Cu47Zr47Al6 and (Cu47Zr47Al6)99Sn1 bulk metallic glasses. Journal of Non-Crystalline Solids. 2018;498:272–280. https://doi.org/10.1016/j.jnoncrysol.2018.06.042
14. Shao L., Xue L., Wang Q., Ma K., Huang J., Shen B. Effects of Si addition on glass-forming ability and crystallization behavior of DyCoAl bulk metallic glass. Journal of Alloys and Compounds. 2021;874:159964.
15. https://doi.org/10.1016/j.jallcom.2021.159964
16. Lu S., Sun S., Li K., Li H., Huang X., Tu G. The effect of Y addition on the crystallization behaviors of Zr-Cu-Ni-Al bulk metallic glass-es. Journal of Alloys and Compounds. 2019;799:501–512. https://doi.org/10.1016/j.jallcom.2019.05.219
17. Rahvard M.M., Tamizifar M., Boutorabi S.M.A. The effect of Ag addition on the non-isothermal crystallization kinetics and fragility of Zr56Co28Al16 bulk metallic glass. Journal of Non-Crystalline Solids. 2018;481:74–84. https://doi.org/10.1016/j.jnoncrysol.2017.10.026
18. Sohrabi S., Gholamipour R. Effect of Nb mi-nor addition on the crystallization kinetics of Zr-Cu-Al-Ni metallic glass. Journal of Non-Crystalline Solids. 2021;560:120731.
19. https://doi.org/10.1016/j.jnoncrysol.2021.120731
20. Liu H., Jiang Q., Huo J., Zhang Y., Yang W., Li X. Crystallization in additive manufactur-ing of metallic glasses: A review. Additive Manufacturing. 2020;36:101568.
21. https://doi.org/10.1016/j.addma.2020.101568
22. Pogatscher S., Leutenegger D., Schawe J.E.K., Maris P., Schäublin R., Uggowitzer P.J., Löffler J.F. Monotropic polymorphism in a glass-forming metallic alloy. Journal of Physics: Condensed Matter. 2018;30:234002.
23. https://doi.org/10.1088/1361-648X/aac054
24. Kumar A., Nayak S.K., Bijalwan P., Dutta Mo., Banerjee A., Laha T. Optimization of mechanical and corrosion properties of plasma sprayed low-chromium containing Fe-based amorphous/nanocrystalline composite coating. Surface and Coatings Technology. 2019;370:255–268. https://doi.org/10.1016/j.surfcoat.2019.05.010
25. Schawe J.E.K., Pogatscher S., Löffler J.F. Thermodynamics of polymorphism in a bulk metallic glass: Heat capacity measurements by fast differential scanning calorimetry. Ther-mochimica Acta. 2020;685:178518.
26. https://doi.org/10.1016/j.tca.2020.178518
27. Ketov S.V., Ivanov Yu.P., Şopu D., Louzguine-Luzgin D.V., Suryanarayana C., Rodin A.O., Schöberl T., Greer A.L., Eckert J. High-resolution transmission electron micros-copy investigation of diffusion in metallic glass multilayer films. Materials Today Ad-vances. 2019;1:100004. https://doi.org/10.1016/j.mtadv.2019.01.003
28. Li Z., Huang Z., Sun F., Li X., Ma J. Forming of metallic glasses: mechanisms and process-es. Materials Today Advances. 2020;7:100077. https://doi.org/10.1016/j.mtadv.2020.100077
29. Hu Z., Lei X., Wang Y., Zhang K. Oxidation feature and diffusion mechanism of Zr-based metallic glasses near the glass transition point. Materials Research Express. 2018;5:036511. https://doi.org/10.1088/2053-1591/aab309
30. Liu B.B., Hu L., Wang Z.Y., Ye F. Viscosity, relaxa-tion and fragility of the Ca65Mg15Zn20 bulk metal-lic glass. Intermetallics. 2019;109:8–15. https://doi.org/10.1016/j.intermet.2019.03.002
31. He N., Song L., Xu W., Huo J., Wang J.-Q., Li R.-W. The evolution of relaxation modes during isothermal annealing and its influence on properties of Fe-based metallic glass. Jour-nal of Non-Crystalline Solids. 2019;509:95–98.
32. https://doi.org/10.1016/j.jnoncrysol.2018.12.035
33. Louzguine-Luzgin D.V., Zadorozhnyy M.Yu., Ketov S.V., Jiang J., Golovin I.S., Aronin A.S. Influence of cyclic loading on the struc-ture and double-stage structure relaxation be-havior of a Zr-Cu-Fe-Al metallic glass. Mate-rials Science and Engineering: A. 2019;742:526–531. https://doi.org/10.1016/j.msea.2018.11.031
34. Wang W.H. Dynamic relaxations and relaxa-tion-property relationships in metallic glasses. Progress in Materials Science. 2019;106:100561. https://doi.org/10.1016/j.pmatsci.2019.03.006
35. Das A., Derlet P.M., Liu C., Dufresne E.M., Maaß R. Stress breaks universal aging behav-ior in a metallic glass. Nature Communica-tions. 2019;10:5006.
36. https://doi.org/10.1038/s41467-019-12892-1
37. Zhang L.T., Duan Y.J., Wada T., Kato H., Pelletier J.M., Crespo D., Pineda E., Qiao J.C. Dynamic mechanical relaxation behavior of Zr35Hf17.5Ti5.5Al12.5Co7.5Ni12Cu10 high entropy bulk metallic glass. Journal of Materi-als Science & Technology. 2021;83:248–255. https://doi.org/10.1016/j.jmst.2020.11.074
38. Zhang Y.R., Zhang W., Xiang Q.C., Li Q.F., Ren Y.L., Qiu K.Q. Relating activation of brittle-to-ductile transition to β relaxation in Cu46Zr44Al7Y3 metallic glass. Journal of Non-Crystalline Solids. 2020;544:120189.
39. https://doi.org/10.1016/j.jnoncrysol.2020.120189
40. Cheng Y.T., Hao Q., Qiao J.C., Crespo D., Pineda E., Pelletier J.M. Effect of minor addi-tion on dynamic mechanical relaxation in ZrCu-based metallic glasses. Journal of Non-Crystalline Solids. 2021;553:120496. https://doi.org/10.1016/j.jnoncrysol.2020.120496
41. Qiao J.C., Cong J., Wang Q., Pelletier J.M., Yao Y. Effects of iron addition on the dynam-ic mechanical relaxation of Zr55Cu30Ni5Al10 bulk metallic glasses. Journal of Alloys and Compounds. 2018;749:262–267.
42. https://doi.org/10.1016/j.jallcom.2018.03.285
43. Qiao J., Pelletier J.-M., Casalini R. Relaxation of bulk metallic glasses studied by mechanical spectroscopy. Journal of Physical Chemistry B. 2013;117(43):13658–13666. https://doi.org/10.1021/jp4067179
44. Zhang W., Xiang Q.C., Ma C.Y., Ren Y.L., Qiu K.Q. Relaxation-to-rejuvenation transi-tion of a Ce-based metallic glass by quench-ing/cryogenic treatment performed at sub-Tg. Journal of Alloys and Compounds. 2020;825:153997. https://doi.org/10.1016/j.jallcom.2020.153997
45. Qiao J.C., Chen Y.H., Casalini R., Pelletier J.M., Yao Y. Main α relaxation and slow β re-laxation processes in a La30Ce30Al15Co25 metallic glass. Journal of Materials Science & Technology. 2019; 35(6):982–986.
46. https://doi.org/10.1016/j.jmst.2018.12.003
47. Zhai W., Wang C.H., Qiao J.C., Pelletier J.M., Dai F.P., Wei B. Distinctive slow β relaxation and structural heterogeneity in (LaCe)-based metallic glass. Journal of Alloys and Com-pounds. 2018;742:536–541.
48. https://doi.org/10.1016/j.jallcom.2018.01.237
49. Michalik S., Michalikova J., Pavlovic M., So-vak P., Liermann H.-P., Miglierini M. Struc-tural modifications of swift-ion-bombarded metallic glasses studied by high-energy X-ray synchrotron radiation. Acta Materialia. 2014;80:309–316. https://doi.org/10.1016/j.actamat.2014.07.072
50. Lu Z., Zhang Y., Li W., Wang J., Liu X., Wu Y., Wang H., Ma D., Lu Z. Materials genome strategy for metallic glasses. Journal of Mate-rials Science & Technology. 2023;166:173–199. https://doi.org/10.1016/j.jmst.2023.04.074
51. Lv Z., Yuan C., Ke H., Shen B. Defects acti-vation in CoFe-based metallic glasses during creep deformation. Journal of Materials Sci-ence & Technology. 2021;69:42–47. https://doi.org/10.1016/j.jmst.2020.08.012
52. Wang T., Ma X., Chen Y., Qiao J., Xie L., Li Q. Structural heterogeneity originated plastici-ty in Zr–Cu–Al bulk metallic glasses. Interme-tallics. 2020;121:106790.
53. https://doi.org/10.1016/j.intermet.2020.106790
54. Cui X., Qiao J.C., Li J.J., Meng L.Z., Guo J., Zu F.Q., Zhang X.F., Bian B.C., Zhang Q.D., Ma Y.B. Room temperature activated slow β relaxation and large compressive plasticity in a LaCe-based bulk metallic glass. Intermetallics. 2020:122:106793. https://doi.org/10.1016/j.intermet.2020.106793
55. Song L., Xu W., Huo J., Wang J.-Q., Wang X., Li R. Two-step relaxations in metallic glasses during isothermal annealing. Interme-tallics. 2018;93:101–105. https://doi.org/10.1016/j.intermet.2017.11.016
56. Pan J., Wang Y.X., Guo Q., Zhang D., Greer A.L., Li Y. Extreme rejuvenation and soften-ing in a bulk metallic glass. Nature Communi-cations. 2018; 9:560.
57. https://doi.org/10.1038/s41467-018-02943-4
58. Zhu Y., Wang H., Wu L., Li M. Development of one-dimensional periodic packing in metallic glass spheres. Scripta Materialia. 2020;177:132–136. https://doi.org/10.1016/j.scriptamat.2019.10.026
59. Lou H., Zeng Z., Zhang F., Chen S., Luo P., Chen X., Ren Y., Prakapenka V.B., Prescher C., Zuo X., Li T., Wen J., Wang W.-H., Sheng H., Zeng Q. Two-way tuning of struc-tural order in metallic glasses. Nature Commu-nications. 2020;11:314.
60. https://doi.org/10.1038/s41467-019-14129-7
61. Michalik Š., Jóvári P., Saksl K., Ďurišin M., Balga D., Darpentigny J., Drakopoulos M. Short range order and crystallization of Cu–Hf metallic glasses. Journal of Alloys and Com-pounds. 2021;853:156775.
62. https://doi.org/10.1016/j.jallcom.2020.156775
63. Feng S., Fu H., Zhou H., Wu Y., Lu Z., Dong H. A general and transferable deep learning framework for predicting phase formation in materials. Computational Materials. 2021;7:10. https://doi.org/10.1038/s41524-020-00488-z
64. Zheng J., Zhang H., Miao Y., Chen S., Vlassak J.J. Temperature-resistance sensor ar-rays for combinatorial study of phase transi-tions in shape memory alloys and metallic glasses. Scripta Materialia. 2019;168:144–148.
65. https://doi.org/10.1016/j.scriptamat.2019.04.027
66. Cao C.R., Huang K.Q., Shi J.A., Zheng D.N., Wang W.H., Gu L., Bai H.Y. Liquid-like be-haviours of metallic glassy nanoparticles at room temperature. Nature Communications. 2019:1966. https://doi.org/10.1038/s41467-019-09895-3
67. Chen E.-Y., Peng S.-X., Peng L., Michiel M.D., Vaughan G.B.M., Yu Y., Yu H.-B., Ruta B., Wei S., Liu L. Glass-forming ability correlated with the liquid-liquid transition in Pd42.5Ni42.5P15 alloy. Scripta Materialia. 2021;193:117–121.
68. https://doi.org/10.1016/j.scriptamat.2020.10.042
69. Xie X., Lo Y.-C., Tong Y., Qiao J., Wang G., Ogata S., Qi H., Dahmen K.A., Gao Y., Liaw P.K. Origin of serrated flow in bulk metallic glasses. Journal of the Mechanics and Physics of Solids. 2019;124:634–642.
70. https://doi.org/10.1016/j.jmps.2018.11.015
71. Adjaoud O., Albe K. Microstructure formation of metallic nanoglasses: Insights from mo-lecular dynamics simulations. Acta Materialia. 2018;145:322–330. https://doi.org/10.1016/j.actamat.2017.12.014
72. Adjaoud O., Albe K. Influence of microstruc-tural features on the plastic deformation be-havior of metallic nanoglasses. Acta Materi-alia. 2019;168:393–400. https://doi.org/10.1016/j.actamat.2019.02.033
73. Wang C., Mu X., Chellali M.R., Kilmametov A., Ivanisenko Yu., Gleiter H., Hahn H. Tun-ing the Curie temperature of Fe90Sc10 nano-glasses by varying the volume fraction and the composition of the interfaces. Scripta Materi-alia. 2019;159:109–112. https://doi.org/10.1016/j.scriptamat.2018.09.025
74. Maaß R. Beyond serrated flow in bulk metallic glasses: what comes next? Metallurgical and Materials Transactions A. 2020;51:5597–5605. https://doi.org/10.1007/s11661-020-05985-w
75. Ibrahim M.Z., Sarhan A.A.D., Kuo T.Y., Yusof F., Hamdi M. Characterization and hardness enhancement of amorphous Fe-based metallic glass laser cladded on nickel-free stainless steel for biomedical implant applica-tion. Materials Chemistry and Physics. 2019;235:121745. https://doi.org/10.1016/j.matchemphys.2019.121745
76. Escher B., Kaban I., Kühn U., Eckert J., Pauly S. Stability of the B2 CuZr phase in Cu-Zr-Al-Sc bulk metallic glass matrix composites. Journal of Alloys and Compounds. 2019;790:657–665. https://doi.org/10.1016/j.jallcom.2019.03.139
77. Schultz L.E., Afflerbach B., Szlufarska I., Morgan D. Molecular dynamic characteristic temperatures for predicting metallic glass forming ability. Computational Materials Sci-ence. 2022;201:110877. https://doi.org/10.1016/j.commatsci.2021.110877
78. Ali Rafique M.M. Bulk Metallic Glasses and Their Composites: Additive Manufacturing and Modeling and Simulation. Berlin. Boston: De Gruyter. 2021.
79. https://doi.org/10.1515/9783110747232
Рецензия
Для цитирования:
Пэй Ч., Иванов Ю.Ф., Семин А.П., Боровский С.В., Громов В.Е., Шляров В.В. МЕТАЛЛИЧЕСКИЕ СТЕКЛА ИЗ ВЫСОКОЭНТРОПИЙНЫХ СПЛАВОВ: СВОЙСТВА, ОСОБЕННОСТИ ПОЛУЧЕНИЯ И ИСПОЛЬЗОВАНИЯ. Вестник Сибирского государственного индустриального университета. 2024;(2):10-22. https://doi.org/10.57070/2304-4497-2024-2(48)-10-22
For citation:
Peilei Zh., Ivanov Yu., Semin A., Borovskii S., Gromov V., Shlyarov V. METAL GLASSES MADE OF HIGH-ENTROPY ALLOYS: PROPERTIES, FEATURES OF PRODUCTION AND USE. Bulletin of the Siberian State Industrial University. 2024;(2):10-22. (In Russ.) https://doi.org/10.57070/2304-4497-2024-2(48)-10-22