Preview

Bulletin of the Siberian State Industrial University

Advanced search

METAL GLASSES MADE OF HIGH-ENTROPY ALLOYS: PROPERTIES, FEATURES OF PRODUCTION AND USE

https://doi.org/10.57070/2304-4497-2024-2(48)-10-22

Abstract

High-entropy alloys (HES) are solid solutions containing five or more basic elements in an alloy in equal or almost equal proportions (at. %). The concept of such alloys opens up new ways to create unusual metallic materials with unique physical and mechanical properties that cannot be obtained in known conditions alloys, which usually contain one main element. Metal glasses (MS) based on high-entropy alloys (MS WES) can be distinguished into a separate group. Metal glasses are a material obtained by sharp hardening of WPP from a liquid state and therefore such glasses have an amorphous glass–like structure. The main constituent elements of MS WPP can be zirconium, copper, iron, nickel, chromium, yttrium, cerium. These materials are very promising for industrial applications due to their superior mechanical properties, such as high strength (close to theoretical strength), wear resistance, hardness, and exceptional magnetic properties. The formation, crystallization and kinetics of these materials are the subject of close study. WPP metal glasses are more stable than conventional MS due to the high configuration entropy. This paper provides a brief overview of the work of domestic and foreign researchers on various aspects of metal glasses. It is shown that the study of the properties of MS WPP can provide a breakthrough and new approaches both in the formation and study of new WPP systems, as well as in the possibility of potential application of these new materials.

About the Authors

Zhang Peilei
Shanghai Collaborative Innovation Center of Laser Advanced Manufacturing Technology
Russian Federation

Dr. Sci., Prof, School of Materials Science and Engineering



Yurii F. Ivanov
Siberian Branch of the Russian Academy of Sciences

Dr. Sci. (Phys.-Math.), Prof., Chief Researcher, Institute of High Current Electronics



Alexander P. Semin
Siberian State Industrial University

Cand. Sci. (Eng.), senior researcher, associate professor of the department of engineering structures, construction technologies and materials



Sergei V. Borovskii
Siberian State Industrial University

Researcher



Viktor E. Gromov
Siberian State Industrial University

Dr. Sci. (Phys.-Math.), Prof., Head of the Department of Science named after V.M. Finkel'



Vitalii V. Shlyarov
Siberian State Industrial University

Postgraduate of the Department of Science named after V.M. Finkel’, Researcher of Laboratory of Electron Microscopy and Image Processing



References

1. Chen Yu., Dai Z.-W., Jiang J.-Z. High entro-py metallic glasses: Glass formation, crystalli-zation and properties. Journal of Alloys and Compounds. 2021;866:158852.

2. https://doi.org/10.1016/j.jallcom.2021.158852

3. Rogachev A.S. Structure, stability and proper-ties of high-entropy alloys. Fizika metallov i metallovedenie. 2020;121(8):807–841. (In Russ.). EDN:REFBUL.

4. https://doi.org/10.31857/S0015323020080094

5. Zhang M., Gong P., Li N., Zheng G., Deng L., Jin J., Li Q., Wang X. Oxidation behavior of a Ti16.7Zr16.7Hf16.7Cu16.7Ni16.7Be16.7 high-entropy bulk metallic glass. Materials Letters. 2019;236:135–138. https://doi.org/10.1016/j.matlet.2018.10.056

6. Gong P., Li F., Deng L., Wang X., Jin J. Re-search on nano-scratching behavior of TiZrHfBeCu(Ni) high entropy bulk metallic glasses. Journal of Alloys and Compounds. 2020;817:153240. https://doi.org/10.1016/j.jallcom.2019.153240

7. Zhang L.T., Duan Y.J., Wada T., Kato H., Pelletier J.M., Crespo D., Pineda E., Qiao J.C. Dynamic mechanical relaxation behavior of Zr35Hf17.5Ti5.5Al12.5Co7.5Ni12Cu10 high entropy bulk metallic glass. Journal of Materi-als Science & Technology. 2021;83:248–255. https://doi.org/10.1016/j.jmst.2020.11.074

8. Li M., Guan H., Yang S., Ma X., Li Q. Minor Cr alloyed Fe–Co–Ni–P–B high entropy bulk metallic glass with excellent mechanical prop-erties. Materials Science and Engineering: A. 2021;805:140542. https://doi.org/10.1016/j.msea.2020.140542

9. Li N., Wu S., Ouyang D., Zhang J., Liu L. Fe-based metallic glass reinforced FeCoCrNiMn high entropy alloy through selective laser melting. Journal of Alloys and Compounds. 2020;822:153695. https://doi.org/10.1016/j.jallcom.2020.153695

10. Pang C.M., Yuan C.C., Chen L., Xu H., Guo K., He J.C., Li Y., Wei M.S., Wang X.M., Huo J.T., Shen B.L. Effect of Yttrium addi-tion on magnetocaloric properties of Gd-Co-Al-Ho high entropy metallic glasses. Journal of Non-Crystalline Solids. 2020;549:120354.

11. https://doi.org/10.1016/j.jnoncrysol.2020.120354

12. Zhao Y., Zhao P., Li W., Kou S., Jiang J., Mao X., Yang Z. The microalloying effect of Ce on the mechanical properties of medium entropy bulk metallic glass composites. Crystals. 2019;9(9):483. https://doi.org/10.3390/cryst9090483

13. Yang Y., Liu C.T. Size effect on stability of shear-band propagation in bulk metallic glass-es: an overview. Journal of Materials Science. 2012;47:55–67. https://doi.org/10.1007/s10853-011-5915-8

14. Rashidi R., Malekan M., Gholamipour R. Crystallization kinetics of Cu47Zr47Al6 and (Cu47Zr47Al6)99Sn1 bulk metallic glasses. Journal of Non-Crystalline Solids. 2018;498:272–280. https://doi.org/10.1016/j.jnoncrysol.2018.06.042

15. Shao L., Xue L., Wang Q., Ma K., Huang J., Shen B. Effects of Si addition on glass-forming ability and crystallization behavior of DyCoAl bulk metallic glass. Journal of Alloys and Compounds. 2021;874:159964.

16. https://doi.org/10.1016/j.jallcom.2021.159964

17. Lu S., Sun S., Li K., Li H., Huang X., Tu G. The effect of Y addition on the crystallization behaviors of Zr-Cu-Ni-Al bulk metallic glass-es. Journal of Alloys and Compounds. 2019;799:501–512. https://doi.org/10.1016/j.jallcom.2019.05.219

18. Rahvard M.M., Tamizifar M., Boutorabi S.M.A. The effect of Ag addition on the non-isothermal crystallization kinetics and fragility of Zr56Co28Al16 bulk metallic glass. Journal of Non-Crystalline Solids. 2018;481:74–84. https://doi.org/10.1016/j.jnoncrysol.2017.10.026

19. Sohrabi S., Gholamipour R. Effect of Nb mi-nor addition on the crystallization kinetics of Zr-Cu-Al-Ni metallic glass. Journal of Non-Crystalline Solids. 2021;560:120731.

20. ttps://doi.org/10.1016/j.jnoncrysol.2021.120731

21. Liu H., Jiang Q., Huo J., Zhang Y., Yang W., Li X. Crystallization in additive manufactur-ing of metallic glasses: A review. Additive Manufacturing. 2020;36:101568.

22. https://doi.org/10.1016/j.addma.2020.101568

23. Pogatscher S., Leutenegger D., Schawe J.E.K., Maris P., Schäublin R., Uggowitzer P.J., Löffler J.F. Monotropic polymorphism in a glass-forming metallic alloy. Journal of Physics: Condensed Matter. 2018;30:234002.

24. https://doi.org/10.1088/1361-648X/aac054

25. Kumar A., Nayak S.K., Bijalwan P., Dutta Mo., Banerjee A., Laha T. Optimization of mechanical and corrosion properties of plasma sprayed low-chromium containing Fe-based amorphous/nanocrystalline composite coating. Surface and Coatings Technology. 2019;370:255–268. https://doi.org/10.1016/j.surfcoat.2019.05.010

26. Schawe J.E.K., Pogatscher S., Löffler J.F. Thermodynamics of polymorphism in a bulk metallic glass: Heat capacity measurements by fast differential scanning calorimetry. Ther-mochimica Acta. 2020;685:178518.

27. https://doi.org/10.1016/j.tca.2020.178518

28. Ketov S.V., Ivanov Yu.P., Şopu D., Louzguine-Luzgin D.V., Suryanarayana C., Rodin A.O., Schöberl T., Greer A.L., Eckert J. High-resolution transmission electron micros-copy investigation of diffusion in metallic glass multilayer films. Materials Today Ad-vances. 2019;1:100004. https://doi.org/10.1016/j.mtadv.2019.01.003

29. Li Z., Huang Z., Sun F., Li X., Ma J. Forming of metallic glasses: mechanisms and process-es. Materials Today Advances. 2020;7:100077. https://doi.org/10.1016/j.mtadv.2020.100077

30. Hu Z., Lei X., Wang Y., Zhang K. Oxidation feature and diffusion mechanism of Zr-based metallic glasses near the glass transition point. Materials Research Express. 2018;5:036511. https://doi.org/10.1088/2053-1591/aab309

31. Liu B.B., Hu L., Wang Z.Y., Ye F. Viscosity, relaxation and fragility of the Ca65Mg15Zn20 bulk metallic glass. Intermetallics. 2019;109:8–15. https://doi.org/10.1016/j.intermet.2019.03.002

32. He N., Song L., Xu W., Huo J., Wang J.-Q., Li R.-W. The evolution of relaxation modes during isothermal annealing and its influence on properties of Fe-based metallic glass. Jour-nal of Non-Crystalline Solids. 2019;509:95–98.

33. https://doi.org/10.1016/j.jnoncrysol.2018.12.035

34. Louzguine-Luzgin D.V., Zadorozhnyy M.Yu., Ketov S.V., Jiang J., Golovin I.S., Aronin A.S. Influence of cyclic loading on the struc-ture and double-stage structure relaxation be-havior of a Zr‒Cu‒Fe‒Al metallic glass. Mate-rials Science and Engineering: A. 2019;742:526–531. https://doi.org/10.1016/j.msea.2018.11.031

35. Wang W.H. Dynamic relaxations and relaxa-tion-property relationships in metallic glasses. Progress in Materials Science. 2019;106:100561. https://doi.org/10.1016/j.pmatsci.2019.03.006

36. Das A., Derlet P.M., Liu C., Dufresne E.M., Maaß R. Stress breaks universal aging behav-ior in a metallic glass. Nature Communica-tions. 2019;10:5006.

37. https://doi.org/10.1038/s41467-019-12892-1

38. Zhang L.T., Duan Y.J., Wada T., Kato H., Pelletier J.M., Crespo D., Pineda E., Qiao J.C. Dynamic mechanical relaxation behavior of Zr35Hf17.5Ti5.5Al12.5Co7.5Ni12Cu10 high entropy bulk metallic glass. Journal of Materi-als Science & Technology. 2021;83:248–255. https://doi.org/10.1016/j.jmst.2020.11.074

39. Zhang Y.R., Zhang W., Xiang Q.C., Li Q.F., Ren Y.L., Qiu K.Q. Relating activation of brittle-to-ductile transition to β relaxation in Cu46Zr44Al7Y3 metallic glass. Journal of Non-Crystalline Solids. 2020;544:120189.

40. https://doi.org/10.1016/j.jnoncrysol.2020.120189

41. Cheng Y.T., Hao Q., Qiao J.C., Crespo D., Pineda E., Pelletier J.M. Effect of minor addi-tion on dynamic mechanical relaxation in ZrCu-based metallic glasses. Journal of Non-Crystalline Solids. 2021;553:120496.

42. https://doi.org/10.1016/j.jnoncrysol.2020.120496

43. Qiao J.C., Cong J., Wang Q., Pelletier J.M., Yao Y. Effects of iron addition on the dynam-ic mechanical relaxation of Zr55Cu30Ni5Al10 bulk metallic glasses. Journal of Alloys and Compounds. 2018;749:262–267.

44. https://doi.org/10.1016/j.jallcom.2018.03.285

45. Qiao J., Pelletier J.-M., Casalini R. Relaxation of bulk metallic glasses studied by mechanical spectroscopy. Journal of Physical Chemistry B. 2013;117(43):13658–13666. https://doi.org/10.1021/jp4067179

46. Zhang W., Xiang Q.C., Ma C.Y., Ren Y.L., Qiu K.Q. Relaxation-to-rejuvenation transi-tion of a Ce-based metallic glass by quench-ing/cryogenic treatment performed at sub-Tg. Journal of Alloys and Compounds. 2020;825:153997. https://doi.org/10.1016/j.jallcom.2020.153997

47. Qiao J.C., Chen Y.H., Casalini R., Pelletier J.M., Yao Y. Main α relaxation and slow β re-laxation processes in a La30Ce30Al15Co25 metallic glass. Journal of Materials Science & Technology. 2019; 35(6):982–986.

48. https://doi.org/10.1016/j.jmst.2018.12.003

49. Zhai W., Wang C.H., Qiao J.C., Pelletier J.M., Dai F.P., Wei B. Distinctive slow β relaxation and structural heterogeneity in (LaCe)-based metallic glass. Journal of Alloys and Com-pounds. 2018;742:536–541.

50. https://doi.org/10.1016/j.jallcom.2018.01.237

51. Michalik S., Michalikova J., Pavlovic M., So-vak P., Liermann H.-P., Miglierini M. Struc-tural modifications of swift-ion-bombarded metallic glasses studied by high-energy X-ray synchrotron radiation. Acta Materialia. 2014;80:309–316. https://doi.org/10.1016/j.actamat.2014.07.072

52. Lu Z., Zhang Y., Li W., Wang J., Liu X., Wu Y., Wang H., Ma D., Lu Z. Materials genome strategy for metallic glasses. Journal of Mate-rials Science & Technology. 2023;166:173–199. https://doi.org/10.1016/j.jmst.2023.04.074

53. Lv Z., Yuan C., Ke H., Shen B. Defects acti-vation in CoFe-based metallic glasses during creep deformation. Journal of Materials Sci-ence & Technology. 2021;69:42–47.

54. https://doi.org/10.1016/j.jmst.2020.08.012

55. Wang T., Ma X., Chen Y., Qiao J., Xie L., Li Q. Structural heterogeneity originated plastici-ty in Zr–Cu–Al bulk metallic glasses. Interme-tallics. 2020;121:106790.

56. https://doi.org/10.1016/j.intermet.2020.106790

57. Cui X., Qiao J.C., Li J.J., Meng L.Z., Guo J., Zu F.Q., Zhang X.F., Bian B.C., Zhang Q.D., Ma Y.B. Room temperature activated slow β relaxation and large compressive plasticity in a LaCe-based bulk metallic glass. Intermetallics. 2020:122:106793. https://doi.org/10.1016/j.intermet.2020.106793

58. Song L., Xu W., Huo J., Wang J.-Q., Wang X., Li R. Two-step relaxations in metallic glasses during isothermal annealing. Interme-tallics. 2018;93:101–105. https://doi.org/10.1016/j.intermet.2017.11.016

59. Pan J., Wang Y.X., Guo Q., Zhang D., Greer A.L., Li Y. Extreme rejuvenation and soften-ing in a bulk metallic glass. Nature Communi-cations. 2018; 9:560.

60. https://doi.org/10.1038/s41467-018-02943-4

61. Zhu Y., Wang H., Wu L., Li M. Development of one-dimensional periodic packing in metallic glass spheres. Scripta Materialia. 2020;177:132–136. https://doi.org/10.1016/j.scriptamat.2019.10.026

62. Lou H., Zeng Z., Zhang F., Chen S., Luo P., Chen X., Ren Y., Prakapenka V.B., Prescher C., Zuo X., Li T., Wen J., Wang W.-H., Sheng H., Zeng Q. Two-way tuning of struc-tural order in metallic glasses. Nature Commu-nications. 2020;11:314.

63. https://doi.org/10.1038/s41467-019-14129-7

64. Michalik Š., Jóvári P., Saksl K., Ďurišin M., Balga D., Darpentigny J., Drakopoulos M. Short range order and crystallization of Cu–Hf metallic glasses. Journal of Alloys and Com-pounds. 2021;853:156775.

65. https://doi.org/10.1016/j.jallcom.2020.156775

66. Feng S., Fu H., Zhou H., Wu Y., Lu Z., Dong H. A general and transferable deep learning framework for predicting phase formation in materials. Computa-tional Materials. 2021;7:10.

67. https://doi.org/10.1038/s41524-020-00488-z

68. Zheng J., Zhang H., Miao Y., Chen S., Vlassak J.J. Temperature-resistance sensor ar-rays for combinatorial study of phase transi-tions in shape memory alloys and metallic glasses. Scripta Materialia. 2019;168:144–148.

69. https://doi.org/10.1016/j.scriptamat.2019.04.027

70. Cao C.R., Huang K.Q., Shi J.A., Zheng D.N., Wang W.H., Gu L., Bai H.Y. Liquid-like be-haviours of metallic glassy nanoparticles at room temperature. Nature Communications. 2019:1966. https://doi.org/10.1038/s41467-019-09895-3

71. Chen E.-Y., Peng S.-X., Peng L., Michiel M.D., Vaughan G.B.M., Yu Y., Yu H.-B., Ruta B., Wei S., Liu L. Glass-forming ability correlated with the liquid-liquid transition in Pd42.5Ni42.5P15 alloy. Scripta Materialia. 2021;193:117–121.

72. https://doi.org/10.1016/j.scriptamat.2020.10.042

73. Xie X., Lo Y.-C., Tong Y., Qiao J., Wang G., Ogata S., Qi H., Dahmen K.A., Gao Y., Liaw P.K. Origin of serrated flow in bulk metallic glasses. Journal of the Mechanics and Physics of Solids. 2019;124:634–642.

74. https://doi.org/10.1016/j.jmps.2018.11.015

75. Adjaoud O., Albe K. Microstructure formation of metallic nanoglasses: Insights from mo-lecular dynamics simulations. Acta Materialia. 2018;145:322–330. https://doi.org/10.1016/j.actamat.2017.12.014

76. Adjaoud O., Albe K. Influence of microstruc-tural features on the plastic deformation be-havior of metallic nanoglasses. Acta Materi-alia. 2019;168:393–400. https://doi.org/10.1016/j.actamat.2019.02.033

77. Wang C., Mu X., Chellali M.R., Kilmametov A., Ivanisenko Yu., Gleiter H., Hahn H. Tun-ing the Curie temperature of Fe90Sc10 nano-glasses by varying the volume fraction and the composition of the interfaces. Scripta Materi-alia. 2019;159:109–112.

78. https://doi.org/10.1016/j.scriptamat.2018.09.025

79. Maaß R. Beyond serrated flow in bulk metallic glasses: what comes next? Metallurgical and Materials Transactions A. 2020;51:5597–5605. https://doi.org/10.1007/s11661-020-05985-w

80. Ibrahim M.Z., Sarhan A.A.D., Kuo T.Y., Yusof F., Hamdi M. Characterization and hardness enhancement of amorphous Fe-based metallic glass laser cladded on nickel-free stainless steel for biomedical implant applica-tion. Materials Chemistry and Physics. 2019;235:121745. https://doi.org/10.1016/j.matchemphys.2019.121745

81. Escher B., Kaban I., Kühn U., Eckert J., Pauly S. Stability of the B2 CuZr phase in Cu-Zr-Al-Sc bulk metallic glass matrix composites. Journal of Alloys and Compounds. 2019;790:657–665. https://doi.org/10.1016/j.jallcom.2019.03.139

82. Schultz L.E., Afflerbach B., Szlufarska I., Morgan D. Molecular dynamic characteristic temperatures for predicting metallic glass forming ability. Computational Materials Sci-ence. 2022;201:110877. https://doi.org/10.1016/j.commatsci.2021.110877

83. Ali Rafique M.M. Bulk Metallic Glasses and Their Composites: Additive Manufacturing and Modeling and Simulation. Berlin. Boston: De Gruyter. 2021.

84. https://doi.org/10.1515/9783110747232


Review

For citations:


Peilei Zh., Ivanov Yu., Semin A., Borovskii S., Gromov V., Shlyarov V. METAL GLASSES MADE OF HIGH-ENTROPY ALLOYS: PROPERTIES, FEATURES OF PRODUCTION AND USE. Bulletin of the Siberian State Industrial University. 2024;(2):10-22. (In Russ.) https://doi.org/10.57070/2304-4497-2024-2(48)-10-22

Views: 55


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304 - 4497 (Print)
ISSN 2307-1710 (Online)