RECENT PROGRESS OF EXTERNAL FIELD PROCESSING TECHNOLOGY IN CHINA*
Abstract
The properties of materials and plastic deformation usually can be modified when it is exposed to a specific field. The common external field is composed of electric field, magnetic field, and ultrasonic field, as well as combinations, etc. For example, electropulsing, as an instantaneous high-energy input method, has been applied for enhancement of the plasticity of metallic materials. It not only can reduce the deformation resistance, but also can reduce a large number of defects to improve the surface quality of metals, which is especially applicable to the materials that are difficult to deform. In the early 1960’s, a number of investigations have shown that except electronic properties, mechanical properties such as the flow stress, creep rate and stress relaxation also undergo a change, a decrease in the flow stress and an increase in the creep rate and stress relaxation, occurring upon going from the normal to the superconducting state.
About the Authors
Guoyi TangRussian Federation
Xiaohui Li
Guolin Song
V.E. Gromov
References
1. Sprecher A.F., Mannan S.L., Conrad H. On the mechanisms for the electroplastic effect in metals // Acta Metal. Mater. 1986. No. 34. P. 1145 – 1162.
2. Lv B., Qiao S., Sun X. Exploration on repair-ing fatigue damage of steel specimens with magnetic treatment // Scripta Mater. 1999. No. 40. P. 767 – 771.
3. Liu Y., Zhao X., Wang D. Determination of the plastic properties of materials treated by ultrasonic surface rolling process through instrumented indentation // Mater Sci Eng: A. 2014. No. 600. P. 21 – 31.
4. Okazaki K., Kagawa M., Conrad H. A study of the electroplastic effect in metal // Scripta Metal. Mater, 1978. No. 12. P. 1063 – 1068.
5. Fan Z. International Materials Reviews, 2002. No. 47. P. 1 – 37.
6. Tang M., Xu J., Zhang Z., Bai Y. Effects of annulus gap on flow and temperature field in electromagnetic direct chill casting process // Trans. Non-ferrous Met Soc. China. 2011. No. 21. P. 1123 – 1129.
7. Dong J., Cui J. Effect of low-frequency electromagnetic field on microstructures and macrosegregation of Φ270 mm DC ingots of an Al–Zn–Mg–Cu–Zr alloy // Mater Letts. 2005. No. 59. P. 1502 – 1506.
8. Dong J., Cui J., Ban C., Liu X. Effect of Low Frequency Electromagnetic Casting on the Castability, Microstructure, and tensile properties of DC cast Al-Zn-Mg-Cu Alloy // Metallurgical and Materials Transactions A. 2004. No. 35. P. 2487 – 2494.
9. Conrad H., Sprecher A.F. Dislocations in Solids. – Elsvier: Amsterdam, 1989. P. 497 – 540.
10. Liu W., Liang K., Zheng Y., Cui J. Influ-ence of homogenization treatment in an electric field on the workability of 1420 Al-Li alloy during hot rolling // Journal of materials science letters. 1996. No. 15. P. 1918 – 1920.
11. Jiang Y., Tang G., Shek C., Zhu Y., Xu Z. On the thermodynamics and kinetics of electropulsing induced dissolution of β-Mg17Al12 phase in an aged Mg–9Al–1Zn alloy // Acta Mater. 2009. No. 57. P. 4797 – 4808.
12. Liu W., Cui J. A study on the ageing treat-ment of 2091 Al-Li alloy with an electric field // Journal of materials science letters. 1997. No. 16. P. 1410 – 1411.
13. Conrad H., Guo Z., Sprecher A. Effect of electropulse duration and frequency on grain growth in Cu // Scripta Metal. Mater. 1990. No. 24. P. 359 – 362.
14. Xu Z., Tang G., Ding F., Tian S., Tian H. Applied Physics A. 2007. No. 88. P. 429 – 433.
15. Gromov V.E., Ivanov Y.F., Stolboushkina O.A., Konovalov S.V.. Dislocation substruc-ture evolution on Al creep under the action of the weak electric potential // Mater. Sci. Eng: A. 2010. No. 527. P. 858 – 861.
16. Asai S. Recent development and prospect of electromagnetic processing of materials // Sci. and Tech. of Advanced Materials. 2000. No. 1. P. 191 – 200.
17. Hao H., Jin J., Zhang X. Joule heating in electromagnetic casting // Sci. and Tech. of Advanced Materials. 2001. No. 2. P. 93 – 96.
18. Troitskii O.A., Likhtman V.I. The anisotro-py of the electron and gamma-irradiation action on the deformation process of zinc single crystals in a brittle state // Dokl Akad Nauk S.S.S.R, 1963. No. 148. P. 332 – 334.
19. Kravchenko V.Y. Role of electron wind in electroplastic deformation of metals // J. Exp. Theoret. Phys. U.S.S.R. 1966. No. 511. 976 p.
20. Klimov K.M., Shnyrevm G.O., Novikov I.I. Electroplastic effect in metals // Soviet Phys. Dokl. 1975. No. 19. P. 787.
21. Wang H., Zhu M., Yu H. Numerical Analysis of Electromagnetic Field and Flow Field in High Casting Speed Slab Continuous Casting Mold With Traveling Magnetic Field // Journal of Iron and Steel Research. 2010. No. 17. P. 25 – 30.
22. Zhang H., Cui J. Production of super-high strength aluminum alloy billets by low fre-quency electromagnetic casting // Trans. Non-ferrous Met. Soc. China. 2011. No. 21. P. 2134 – 2139.
23. Li X., Tang G., Kuang J., Li X., Zhu J. Ef-fect of current frequency on the mechanical properties, microstructure and texture evolution in AZ31 magnesium alloy strips during electroplastic rolling // Mater. Sci. Eng: A. 2014. No. 612. P. 406 – 413.
24. Li X., Wang F., Li X., Tang G., Zhu J. Im-provement of formability of Mg–3Al–1Zn alloy strip by electroplastic-differential speed rolling // Mater. Sci. Eng: A. 2014. No. 618. P. 500 – 504.
25. Ion S.E., Humphreys F.J., White S.H. Dynamic Recrystallisation and the Development of Microstructure during the High Temperature Deformation of Magnesium // Acta Metallurgia. 1982. No. 30. P. 1909 – 1919.
26. Liu D., Li X., Tang G., Chen L., Wang H. An ultrasonic-electric surface modification of stainless steel treatment // Materials Science and Technology. 2014. Submission.
27. Ye Y., Li X., Tang G. The effect of electro-pulsing assisted ultrasonic impact treatment on the mechanical properties and microstructure evolution of steel // Materials Science and Technology. 2014. Submission.
Review
For citations:
Tang G., Li X., Song G., Gromov V. RECENT PROGRESS OF EXTERNAL FIELD PROCESSING TECHNOLOGY IN CHINA*. Bulletin of the Siberian State Industrial University. 2017;(3):4-10. (In Russ.)