Preview

Bulletin of the Siberian State Industrial University

Advanced search

“WHITE” LAYERS ON THE RAIL SURFACE

Abstract

The data on formation of “white” layers on the surface of rails during long-term operation taken from scientific literature are analyzed. It is noted that the main mechanisms of formation of these layers is martensite and nanosized ferrite generation. Advantages and disadvantages of modern methods of structural studies of “white” layers by transmission electron microscopy (TEM), electron backscatter diffraction, crystallographic orientation mapping in TEM, Kikuchi diffraction are revealed. Analyzing models of layer formation during intense plastic deformation, it was noted that good conformity with experimental data is provided by Kelvin-Helmholtz instability model.

About the Authors

V.E. Kormyshev
Siberian State Industrial University
Russian Federation


E.Yu. Zhavoronkova
Siberian State Industrial University


Yu.A. Rubannikova
Siberian State Industrial University


V.E. Gromov
Siberian State Industrial University


A.A. Yuryev
EVRAZ Consolidated West Siberian Metallurgical Plant JSC


References

1. Bernsteiner C., Muller G., Meierhofer A. et al. De-velopment of while etching layers on rails: Simula-tion and experiments // Wear. 2016. Vol. 366-367. P. 116 – 122.

2. Wu J., Petrov R.H., Kolling S. et al. Micro and nanoscale characterization of complex multi-layer-structured white etching in rails // Metals. 2018. Vol. 8. P. 749 – 768.

3. Österle R.H., Pyzalla A., Wang L.W. et al. Investigation of white etching layers on rails by optical microscopy, electron microscopy, X-ray and synchrotron X-ray diffraction // Mater. Sci. Eng. A. 2001. No. 303. P. 150 – 157.

4. Wild W.L., Hasse B., Wroblewski T. et al. Microstructure alterations at the surface of a heavi-ly corrugated rail with strong ripple formation // Wear. 2003. No. 254. P. 876 – 883.

5. Zhang H.W., Ohsaki S., Mitao S. et al. Mi-crostructural investigation of white etching layer on pearlite steel rail // Mater. Sci. Eng. A. 2006. No. 421. P. 191 – 199.

6. Takahashi J., Kawakami K., Ueda M. Atom probe tomography analysis of the white etching layer in a rail track surface // Acta Mater. 2010. No. 58. P. 3602 – 3612.

7. Lojkowski W., Djahanbakhsh M., Bürkle G. et al. Nanostructure formation on the surface of railway tracks // Mater. Sci. Eng. A. 2001. No. 303. P. 197 – 208.

8. Newcomb S.B., Stobbs W.M. A transmission electron microscopy study of the white-etching layer on a rail head // Mater. Sci. Eng. 1984. No. 66. P. 195 – 204.

9. Ishida M. Rolling contact fatigue (RCF) de-fects of rails in Japanese railways and its mitigation strategies // Electron. J. Struct. Eng. 2013. No. 13. P. 67 – 74.

10. Steenbergen M., Dollevoet R. On the mech-anism of squat formation on train rails – Part I: Origination // Int. J. Fatigue. 2013. No. 47. P. 361 – 372.

11. Pal S., Valente C., Daniel W. et al. Metal-lurgical and physical understanding of rail squat initiation and propagation // Wear. 2012. No. 284-285. P. 30 – 42.

12. Clayton P. Tribological aspects of wheel-rail contact: A review of recent experimental research // Wear. 1995. No. 191. P. 170 – 183.

13. Carroll R.I., Beynon J.H. Rolling contact fa-tigue of white etching layer: Part 1. Crack mor-phology // Wear. 2007. No. 262. P. 1253 – 1266.

14. Carroll R.I., Beynon J.H. Rolling contact fa-tigue of white etching layer: Part 2. Numerical re-sults // Wear. 2007. No. 262. P. 1267 – 1273.

15. Wang L., Pyzalla A., Stadlbauer W. et al. Microstructure features on rolling surfaces of rail-way rails subjected to heavy loading // Mater. Sci. Eng. A. 2003. No. 359. P. 31 – 43.

16. Lojkowski W., Millman Y., Chugunova S.I. et al. The mechanical properties of the nanocrystal-line layer on the surface of railway tracks // Mater. Sci. Eng. A. 2001. No. 303. P. 209 – 215.

17. Wu J., Petrov R.H., Naeimi M. et al. Laboratory simulation of martensite formation of white etching layer in rail steel // Int. J. Fatigue. 2016. No. 91. P. 11 – 20.

18. Griffiths B.J. White layer formations at ma-chined surfaces and their relationship to white lay-er Formations at worn surfaces // J. Tribol. 1985. No. 107. P. 165.

19. Umbrello D., Rotella G. Experimental anal-ysis of mechanisms related to white layer for-mation during hard turning of AISI 52100 bearing steel // Mater. Sci. Technol. 2012. No. 28. P. 205 – 212.

20. Todaka Y., Umemoto M., Tsuchiya K. Nanocrystallization in carbon steels by various se-vere plastic deformation processes // Materials Sci-ence Forum. No. 503-504. P. 11 – 18.

21. Rauch E.F., Véron M. Automated crystal orientation and phase mapping in TEM // Mater. Charact. 2014. No. 98. P. 1 – 9.

22. Kobler A., Kashiwar A., Hahn H. et al. Combination of in situ straining and ACOM TEM: A novel method for analysis of plastic deformation of nanocrystalline metals // Ultramicroscopy. 2013. No. 128. P. 68 – 81.

23. Linz M., Cihak-Bayr U., Trausmuth A. et al. EBSD study of early-damaging phenomena in wheel – rail model test // Wear. 2015. No. 342-343. P. 13 – 21.

24. Wu J., Petrov R.H., Naeimi M. et al. A mi-crostructural study of rolling contact fatigue in rails. – Civil-Comp Press: Stirling, 2014. P. 118.

25. Hossain R., Pahlevani F., Witteveen E. et al. Vol.4 Hybrid structure of white layer in high carbon steel–Formation mechanism and its proper-ties // Sci. Rep. 2017. No. 7. P. 1 – 12.

26. Диференцированно закаленные рельсы: Эволю-ция структуры и свойств в процессе эксплуатации / В.Е. Громов, Ю.Ф. Иванов, Юрьев А.А. и др. Ново-кузнецк: ИЦ СибГИУ, 2017. – 197 с.

27. Moiseenko D.D., Panin V.E. Physical frac-ture mesomechanics of solids treated as nonlinear hierarchically organized systems // Mechanics of Solids. 2015. Vol. 50. No. 4. P. 400 – 411.

28. Samuel Forest, Elias C. Aifantis. Some links between recent gradient thermo-elasto-plasticity theories and the thermomechanics of generalized continua // International Journal of Solids and Structures. 2010. Vol. 47. P. 3367 – 3376.

29. Zhang N.H., Meng W.L., Aifantis E.C. Elastic bending analysis of bilayered beams con-taining a gradient layer by an alternative two-variable method // Composite Structures. 2011. Vol. 93. P. 3130 – 3139.

30. Александров В.М., Пожарский Д.А. Не-классические пространственные задачи механи-ки контактных взаимодействий упругих тел. – М.: Факториал, 1998. – 288 c.

31. Александров В.М., Чебаков М.И. Анали-тические методы в контактных задачах теории упругости. – М.: Физматлит, 2004. – 302 с.

32. Sarychev V.D., Nevskii S.A., Sarycheva E.V. et al. Viscous flow analysis of the Kelvin-Helmholtz instability for short waves // AIP Con-ference Proceedings. 2016. No. 1783. P. 020198-1 – 020198-4.

33. Сарычев В.Д., Невский С.А., Громов В.Е. Модель образования наноструктур в рельсовой стали при интенсивной пластической деформа-ции // Деформация и разрушение материалов. 2016. № 6. С. 25 – 29.

34. Sarychev V.D., Nevskii S.A.,Granovskii A.Yu. et al. Viscous flow analysis of the Kelvin-Helmholtz instability for short waves // AIP Con-ference Proceedings. 2015. No. 1683. P. 020200-1 – 020200-4.


Review

For citations:


Kormyshev V., Zhavoronkova E., Rubannikova Yu., Gromov V., Yuryev A. “WHITE” LAYERS ON THE RAIL SURFACE. Bulletin of the Siberian State Industrial University. 2020;(1):5-8. (In Russ.)

Views: 3


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304 - 4497 (Print)
ISSN 2307-1710 (Online)