MODIFICATION OF THE SURFACE LAYER OF THE ХН65ВМТЮ ALLOY BY THE METHOD OF PULSE ELECTRON BEAM TREATMENT
https://doi.org/10.57070/2304-4497-2024-4(50)-72-82
Abstract
One of the promising methods for increasing the performance characteristics of parts of the hot path of gas turbine engines is to change the physicochemical properties of the surface layers of the base material through the use of radiation beam technologies, namely pulsed electron beam processing (EBP). The paper examines the results of modification by an electron beam of samples cut from the locking part of the rotor blades (RB) of the high-pressure turbine (HPT) of the ground-based gas turbine compressor GTK-10-4 after operation for 37,444 hours, made of a heat-resistant nickel-based alloy ХН65ВМТЮ without protective coating. The variable processing parameter was the electron beam energy density Es, which was Es = 15, 25 and 35 J/cm2, the duration of its exposure τ, as well as the number of pulses N did not vary. Measurement of the microhardness and nanohardness of the modified layers, as well as the study of the tribological characteristics (friction coefficient µ and wear rate of the surface layer Vis) of the surface of the treated samples made it possible to determine the optimal EPO mode from those considered, the energy density at which was Es = 15 J/cm2. Suggestions have been put forward about the possible reasons for the degradation of the tribological properties of the surface layer of the alloy relative to the initial state after EPB in other modes, related to the resulting structure of the modified layers and the presence of cracks and volumetric defects in it. The main provisions of the theory of directional crystallization under conditions of multicomponent alloy and high cooling rates of the surface layer have been confirmed. The impossibility of using pulsed EPB in mass production conditions as an independent finishing method of processing was noted. The use of this technology is possible only if certain modes are used with subsequent grinding necessary to level the developed microrelief of the treated surface, as well as remove the metal layer in the amount necessary to eliminate surface cracks.
About the Authors
Dmitrij V. KomarovRussian Federation
Postgraduate student of the Department of Metal Technology and Aviation Materials Science, Head of the Research and Development Department
Sergej V. Konovalov
Dr. Sci. (Eng.), Prof., Vice-Rector for Scientific and Innovation Activities, Professor of the Department of Metal Technology and Aviation Materials Science
Yurij F. Ivanov
Dr. Sci. (Phys.-Math.), Professor, Chief Researcher, Laboratory of Plasma Emission Electronics
Irina A. Panchenko
Cand. Sci. (Eng.), Associate Professor of the Department of Quality Management and Innovation, Head of the Laboratory of Electron Microscopy and Image Processing
References
1. Ivanov Y.F., Gromov V.E, Zagulyaev D.V., Konovalov S.V., Rubannikova Y.A., Semin A.P. Prog. Phys. Met. 2022;21(3):345–362.
2. Komarov D.V., Konovalov S.V., Zhukov D.V., Vinogradov I.S., Panchenko I.A. Analiz sovremennoj situacii v oblasti primeneniya elektronno-puchkovoj obrabotki razlichnyh splavov. Part 1. Polzunovskij vestnik. 2021;4:129–139. https://doi.org/10.25712/ASTU.2072-8921.2021.04.0174; EDN: PEMXHD.
3. Komarov D.V., Konovalov S.V., Zhukov D.V., Vinogradov I.S., Panchenko I.A. Analiz sovremennoj situacii v oblasti primeneniya elektronno-puchkovoj obrabotki razlichnyh splavov. Part 2. Polzunovskij vestnik. 2022;3:204–215. https://doi.org/10.25712/ASTU.2072-8921.2022.03.028. EDN: VAJZCT.
4. Shulov V.A., Engel'ko V.I., Gromov A.N., Teryaev D.A., Bycenko O.A., Shirvan'yanc G.G. Primenenie sil'notochnyh impul'snyh elektronnyh puchkov dlya vosstanovleniya ekspluatacionnyh svojstv lopatok gazoturbinnyh dvigatelej. Izvestiya vysshih uchebnyh zavedenij. Poroshkovaya metallurgiya i funkcional'nye pokrytiya. 2014;1:43–49. EDN: RYEQWL.
5. Shulov V.A., Gromov A.N., Teryaev D.A., Engel'ko V.I. Primenenie sil'notochnyh im-pul'snyh elektronnyh puchkov dlya modificirovaniya poverhnosti lopatok gazoturbinnyh dvigatelej (review). Izvestiya vysshih uchebnyh zavedenij. Poroshkovaya metallurgiya i funkcional'nye pokrytiya. 2015;1:38–48. https://doi.org/10.17073/1997-308X-2015-1-38-48; EDN: TNIHGB.
6. Shulov V.A., Krajnikov A.V., Pajkin A.G., Bycenko O.A., Engel'ko V.I., Tkachenko K.I. Modificirovanie zharostojkogo vakuumno-dugovogo pokrytiya NiCrAlY na poverhnosti lopatok iz zharoprochnyh nikelevyh splavov ZhS6U i ZhS26NK sil'notochnymi impul'snymi elektronnymi puchkami. Uprochnyayushchie tekhnologii i pokrytiya. 2009;2:37–40. EDN: KWJKAN.
7. Novikov A.S., Pajkin A.G., Shulov V.A., Bycenko O.A., Teryaev D.A., Engel'ko V.I., Tkachenko K.I. Rezul'taty dlitel'nyh ispytanij na tekhnologicheskom dvigatele RD33 lopatok kompressora GTD iz stali EP866Sh, obluchennyh sil'notochnym impul'snym elektronnym puchkom. Uprochnyayushchie tekhnologii i pokrytiya. 2010;9:18–22. EDN: MUFMUF.
8. Zhao G., Zhang P., Li J., Zhang Z., Li H., Ma L. Surface modification of CrFeCoNiMo high entropy alloy induced by high-current pulsed electron beam. Applied Surface Science. 2020;504:144453. https://doi.org/10.1016/ j.apsusc.2019.144453.
9. Zhao G., Zhang P., Li J., Zhang Z., Li H., Ma L. Effects of different scanning speeds on microstructure evolution and tribological properties of Inconel 718 alloy vacuum electron beam surface modification. Materials Today Sustainability. 2024;25:100613.
10. https://doi.org/10.1016/j.mtsust.2023.100613.
11. Hajrulin V.T., Samohvalov N.Yu., Tihonov A.S., Sendyurev S.I. Rezul'taty eksperimental'nogo issledovaniya lopatok turbin s razlichnoj poverhnostnoj sherohovatost'yu. Vestnik Permskogo nacional'nogo issledovatel'skogo politekhnicheskogo universiteta. Aerokosmicheskaya tekhnika. 2015;42:20–33.
12. https://doi.org/10.15593/2224-9982/2015.42.2; EDN: TZQUDL.
13. Liu J., Li Z., Hanachi H. A physics-based framework for online surface roughness as-sessment for high-pressure turbines. Chinese Journal of Aeronautics. 2021;34(7):135–156.
14. Nosov N.V., Abramov A.D., Kosulin S.I. Ocenka mikrostruktury poverhnosti profilya pera lopatok gazoturbinnogo dvigatelya. Vestnik Samarskogo universiteta. Aerokosmicheskaya tekhnika, tekhnologii i mashinostroenie. 2017;16(2):90–100. https://doi.org/10.18287/2541-7533-2017-16-2-90-100; EDN: ZAETLZ.
15. Shulov V.A., Engel'ko V.I., Gromov A.N., Teryaev D.A., Bycenko O.A., Shirvan'yanc G.G. Krateroobrazovanie na poverhnosti detalej iz titanovyh splavov pri obluche-niisil'notochnymi impul'snymi elektronnymi puchkami. Fizika i himiya obrabotki materialov. 2015;5:22–28. EDN: UXBPTV.
16. Gromov V.E., Konovalov S.V., Aksyonova K.V., Kobzareva T.Yu. Evolyuciya struktury i svojstv legkih splavov pri energeticheskih vozdejstviyah. Min-vo obr. i nauki RF, SibGIU, Mezhgos. Koordinac. Sovet po fizike prochnosti i plastichnosti materialov. Novosibirsk: Izd-vo SO RAN, 2016:249.
17. Toktarbaeva G.M., Alpysbaev S.K., Rahadilov B.K., Satabaeva Z.A., Zhaparova M.S. Vliyanie elektrolitno-plazmennogo uprochneniya poverhnosti na strukturu i svojstva stali 40HN. Vestnik Vostochno-Kazahstanskogo gosudarstvennogo tekhnicheskogo universiteta im. D. Serikbaeva. 2020;1:199–204.
18. https://doi.org/10.51885/15614212_2020_1_199 EDN: QZKRJI.
19. Muslov S.A., Lotkov A.I. Nanotverdost' i modul' uprugosti monokristallov i polikristallov sistemy splavov TiNi‒TiFe. Fizicheskaya mezomekhanika. 2022;25(6):57–62.
20. https://doi.org/10.55652/1683-805X_2022_25_6_57; EDN: ALVTYQ.
21. Gao Y. Surface modification of TC4 titanium alloy by high current pulsed electron beam (HCPEB) with different pulsed energy densities. J. Alloys and Comps. 2013;572:180–185.
22. Mysik R.K., Sulinin A.V., Brusnicyn S.V. Litejnye splavy na osnove tyazhelyh cvetnyh metallov: uchebnoe posobie dlya srednego professional'nogo obrazovaniya. Moscow: Yurajt, 2024:140.
23. Belyavin A.F., Kurenkova V.V., Fedotov D.A., Salij S.G., Shcherbinin A.P. Prodlenie resursa rabochih lopatok GTK 10-4 iz splava EI 893 posle prodolzhitel'nogo sroka ekspluatacii. Avtomaticheskaya svarka. 2016; 4(752):9–25.
24. Mubarakshin R.M., Dicheskul M.D., Nikolaev N.N., Travkin A.A., Mubarakshin R.M. Robotizirovannaya adaptivnaya razmernaya polirovka kompressornyh i turbinnyh lopatok. Aviacionnye dvigateli. 2021;4(13):51‒62. https://doi.org/10.54349/26586061_2021_4_51 EDN: YGFKKK.
25. Sazonov M.B., Solovackaya L. V. Vliyanie napryazhyonnogo sostoyaniya poverhnostnogo sloya na vynoslivost' lopatok kompressora gazoturbinnogo dvigatelya. Vestnik Samarskogo universiteta. Aerokosmicheskaya tekhnika, tekhnologii i mashinostroenie. 2019;18(1):109–117. https://doi.org/10.18287/2541-7533-2019-18-1-109-117; EDN: ZDUVLV.
Review
For citations:
Komarov D., Konovalov S., Ivanov Yu., Panchenko I. MODIFICATION OF THE SURFACE LAYER OF THE ХН65ВМТЮ ALLOY BY THE METHOD OF PULSE ELECTRON BEAM TREATMENT. Bulletin of the Siberian State Industrial University. 2024;(4):72-82. (In Russ.) https://doi.org/10.57070/2304-4497-2024-4(50)-72-82