APPLICATION OF MOLECULAR DYNAMICS MODELING IN STUDY OF PROCESSES OCCURRING IN THE CONTACT AREA OF WELDED METALS
Abstract
Studying structure at nanometer level through practical experimentation is challenging due to the small particle size. The use of computer simulation methods for studying high-temperature effects on atomic mechanisms of transformation of the structure of a bcc crystal makes it possible to study problem that is difficult and expensive to solve by experimental methods. In this case, method of computer modeling is more rational. Purpose of the work is to study high-temperature effect on change in structure of the bcc metal crystal at the nanoscale level. Currently, many modeling methods are used that make it possible to study properties and structure of material at molecular level. In this study, molecular dynamics method was used. Using this method, it is possible to predict change in structure and properties when exposed to high temperatures. In the course of study, it was found that molecular dynamics modeling method has its advantages for simulating various joining processes using different types of materials on an atomic scale. Practical significance lies in study of the effect of high temperatures on metals and their alloys, which affect processes of structural restructuring at the atomic level, which makes it possible to use high temperatures for carrying out welding processes.
About the Authors
A. N. GostevskayaRussian Federation
A. V. Markidonov
References
1. Маркидонов А.В. Механизмы кооператив-ного воздействия групп атомов на струк-турные изменения в ГЦК-металлах при внешних высокоинтенсивных воздей-ствиях: автореф. дисс. ... докт. физ.-мат. наук: 01.04.07: Барнаул, 2016. – 36 с.
2. Бесогонов В.В., Андреев В.В., Андреев В.В. Определение временного шага интегрирования при моделировании лазерного воздействия на металлы методом молекулярной динамики // Химическая физика и мезоскопия. 2009. Т. 11. № 2. С. 159 – 165.
3. Андреев В.В., Андреев В.В. Определение наиболее эффективного метода параллельной обработки при решении задач методом молекулярной динамики // Химическая физика и мезоскопия. 2010. Т. 12. № 4. С. 458 – 466.
4. Rieth M. Diffusion weld study for Test Blanket Module fabrication // Fusion En-gineering and Design. 2009. Vol. 84. No. 7. P. 1602 – 1605.
5. Kolmogorov V.L., Zalazinsky A.G. On metal joining and the prediction of the strength of solid-phase joints // Journal of Materials Processing Technology. 1998. Vol. 75. No. 1. P. 157 – 164.
6. Soltani S., Abdolrahim N., Sepehrband P., Molecular dynamics study of self-diffusion in the core of a screw dislocation in face centered cubic crystals // Scripta Materialia. 2017. Vol. 133. P. 101 – 104.
7. Lu T., Niu G., Xu Y. et al. Molecular dynamics study of the diffusion properties of H in Fe with point defects. // Fusion Engineering and Design. 2016. Vol. 113. P. 340 – 345.
8. Chen S.D., Ke F.J., Zhou M. Atomistic investigation of the effects of temperature and surface roughness on diffusion bonding between Cu and Al // Acta Materialia. 2007. Vol. 55. No. 9. P. 3169 – 3175.
9. Chen S.D., Soh A.K., Ke F.J. Molecular dynamics modeling of diffusion bonding // Scripta Materialia. 2005. Vol. 52. No. 11. P. 1135 – 1140.
10. Li C., Li D., Tao X. et al. Molecular dynam-ics simulation of diffusion bonding of Al – Cu interface // Modelling and Simulation in Materials Science and Engineering Eng. 2014. Vol. 22. No. 6. P. 065002.
11. Kim H.J., Emgea A., Winter R.E. et al. Nanostructures generated by explosively driven friction: Experiments and molecular dynamics simulations // Acta Materialia. 2009. Vol. 57. No. 17. P. 5270 – 5282.
12. Saresoja O., Kuronen A., Nordlund K. Atomistic simulation of the explosion welding process // Advanced Engineering Materials. 2012. Vol. 14. No. 4. P. 265 – 268.
13. Chen S.Y., Wu Z.W., Liu K.X. et al. Atomic diffusion behavior in Cu – Al explosive welding process // Journal of Applied Physics. 2013. Vol. 113. No. 4. P. 6.
14. Zhang T.-T., Wang W.-X., Zhou J. et al. Mo-lecular Dynamics Simulations and Experi-mental Investigations of Atomic Diffusion Behavior at Bonding Interface in an Explo-sively Welded Al/Mg Alloy Composite Plate // Acta Metallurgica Sinica (English Letters). 2017. Vol. 30. No. 10. P. 983 – 991.
15. Shi-yang C., Zhen-wei W., Kai-xin L. Atom-ic diffusion across Ni 50 Ti 50 Cu explosive welding interface: Diffusion layer thickness and atomic concentration distribution // Chi-nese Physics B. 2014. Vol. 23. No. 6. P. 1 – 6.
Review
For citations:
Gostevskaya A.N., Markidonov A.V. APPLICATION OF MOLECULAR DYNAMICS MODELING IN STUDY OF PROCESSES OCCURRING IN THE CONTACT AREA OF WELDED METALS. Bulletin of the Siberian State Industrial University. 2021;(2):11-14. (In Russ.)