Preview

Bulletin of the Siberian State Industrial University

Advanced search

PLASMA MODIFICATION OF THE SURFACE OF POLYPROPYLENE FILMS AT ATMOSPHERIC PRESSURE

https://doi.org/10.57070/2304-4497-2025-2(52)-17-26

Abstract

Polymer self-adhesive materials are widely used in various industries (construction, medicine, packaging, automotive, advertising, electronics and consumer goods). Their popularity is due to their operational characteristics: resistance to external influences and ease of use. The results of studies of the surface properties of polypropylene (PP) films modified using low-temperature plasma of atmospheric pressure glow discharge are presented. The treatment time was 3, 5, 10, and 15 seconds, and the plasma was initiated in technical argon, air, and mixtures thereof in the proportions of 70:30, 50:50, and 30:70. The study shows that the plasma modification significantly improves the adhesive properties of polypropylene, doubling them compared to the original sample. The maximum adhesion performance (135.5 MJ/m2) of PP was achieved with modification in argon for 15 seconds, which doubled the adhesion properties compared to the initial sample. An increase in the processing time of more than 15 seconds does not affect the adhesive properties and the wetting edge angle. A mixture of argon and air was used to reduce argon consumption. The optimal 50:50 ratio ensured an edge wetting angle of 42 ± 1° and an adhesion of 127.9 MJ/m2 (close to the values of pure argon). An increase in the surface roughness of modified PP films was noted from 52.6 to 199.4 nm in argon, to 133.1 nm in an argon‒air mixture (50:50). Increasing the roughness facilitates the application of glue and strengthens the adhesive bond. The study investigated the kinetics of changes in the electret properties of PP films and their effect on adhesive properties. The results obtained during the study are recommended for the development of basic materials for self-adhesive products with improved performance properties.

About the Authors

Kirill A. Demin
East Siberian State University of Technology and Management, Institute of Physical Materials Science
Russian Federation

Senior Lecturer, Junior Researcher



Stepan S. Agnaev
East Siberian State University of Technology and Management

student



Sayan D. Dondukov
East Siberian State University of Technology and Management

student



Andrey N. Khagleev
East Siberian State University of Technology and Management, Institute of Physical Materials Science

Cand. Sci. (Eng.), Associate Prof., Senior Lecturer, Researcher



References

1. Kostov K.G., Nishime T.M.C., Castro A.H.R., Toth A., Hein L.R.O. Surface modification of polymeric materials by cold atmospheric plasma jet. Applied Surface Science. 2014;314:367–375. https://doi.org/10.1016/j.apsusc.2014.07.009

2. Nastuta A.V., Asandulesa M., Doroftei F., Dascalu I-A., Varganici C.-D., Tiron V., To-pala I. Atmospheric Pressure Plasma Jet Expo-sure of Polylactic Acid Surfaces for Better Adhesion: Plasma Parameters towards Poly-mer Properties. Polymers. 2024;16(2):240.

3. https://doi.org/10.3390/polym16020240

4. Demin K.A., Khagleev A.N., Urkhanova L.A., Khardaev P.K., Agnaev S.S., Dondukov S.D. Sliding arc plasma modified waterproofing polymer films. Vestnik VSGUTU. 2024;1(92):90–96. (In Russ.).

5. https://doi.org/10.53980/24131997_2024_1_90

6. Mozetič M. Aging of Plasma-Activated Polyethylene and Hydrophobic Recovery of Polyethylene Poly-mers. Polymers. 2023;15(24):4668. https://doi.org/10.3390/polym15244668

7. Berczeli M., Hatoss B., Kókai E. Surface treatment of polymer matrix nanocomposites for adhesion enhancement by cold plasma. IOP Conference Series: Materials Science and Engineering. 2022;1246:012028.

8. https://doi.org/10.1088/1757-899X/1246/1/012028

9. Vassallo E., Aloisio M., Pedroni M., Ghezzi F., Cerruti P., Donnini R. Effect of Low-Pressure Plasma Treatment on the Surface Wettability of Poly (butylene succinate) Films. Coatings. 2022;12(2):220. https://doi.org/10.3390/coatings12020220

10. Khagleev A.N., Urkhanova L.A., Buyantuev S.L., Demin K.A., Mokeev M.A., Agnaev S.S. The influ-ence of sliding arc plasma on the physical and me-chanical properties of waterproofing polyethylene. Vestnik VSGUTU. 2022;4(87):64–70. (In Russ.).

11. https://doi.org/10.53980/24131997_2022_4_64

12. Aydemir C., Altay B.N., Akyol M. Surface analysis of polymer films for wettability and ink adhesion. Color Research and Application. 2021;46(2):489–499. https://doi.org/10.1002/col.22579

13. Štěpánová V., Šrámková P., Sihelník S., Stu-pavská M., Jurmanová J., Kováčik D. The ef-fect of ambient air plasma generated by copla-nar and volume dielectric barrier discharge on the surface characteristics of polyamide foils. Vacuum. 2021;183:109887.

14. https://doi.org/10.1016/j.vacuum.2020.109887

15. Grigor'ev A.Yu., Efremova A.A., Garipov R.M. Changes in the surface properties of polymer films during short-term treatment with a corona discharge field. Promyshlennoe proizvodstvo i ispol'zovanie elas-tomerov. 2021;3:44–50. (In Russ.).

16. https://doi.org/10.24412/2071-8268-2021-3-44-50

17. Kelar J., Shekargoftar M., Krumpolec R., Homola T. Activation of polycarbonate (PC) surfaces by atmospheric pressure plasma in ambient air. Polymer Testing. 2018;67:428–434.

18. https://doi.org/10.1016/j.polymertesting.2018.03.027

19. Shekargoftar M., Kelar J., Krumpolec R., Jurmanova J., Homola T. A Comparison of the Effects of Ambient Air Plasma Generated by Volume and by Coplanar DBDs on the Surfaces of PP/Al/PET Laminated Foil. IEEE Transactions Plasma Science. 2018;46(10):3653–3661. https://doi.org/10.1109/TPS.2018.2861085

20. Vesel A., Zaplotnik R., Primc G., Mozetič M. Evolution of the Surface Wettability of PET Polymer upon Treatment with an Atmospher-ic-Pressure Plasma Jet. Polymers. 2020;12(1):87. https://doi.org/10.3390/polym12010087

21. Noeske М., Degenhardt J., Strudthoff S., Lom-matzsch U. Plasma jet treatment of five polymers at atmospheric pressure: surface modifications and the relevance for adhesion. International Journal of Adhe-sion and Adhesives. 2004;24:171–177.

22. https://doi.org/10.1016/j.ijadhadh.2003.09.006

23. Hamdi M., Saleh M.N., Poulis J.A. Improving the adhesion strength of polymers: effect of surface treatments. Journal of Adhesion Sci-ence and Technology. 2020;34(17):1853–1870.

24. https://doi.org/10.1080/01694243.2020.1732750

25. Qi L., Min W., Gao R., Li Z., Yu M., Sun Z. Optimization of interfacial bonding properties between thermoplastic liners and carbon fiber-reinforced composites by atmospheric-pressure plasma and failure mechanism study. Polymer Composites. 2023;44(4):2361–2378.

26. https://doi.org/10.1002/pc.27249

27. Cherepanov K.A., Korotkov S.G. Thermal protection and energy saving based on the use of nanodispersed binder. Vestnik Sibirskogo gosudarstvennogo industrial'nogo universitetа. 2015;2(12):88–91. (In Russ.).

28. Kravets L.I., Dmitriev S.N., Apel' P.Yu. Poly-propylene track membranes for micro- and ul-trafiltration of chemically aggressive media. I. Etching of high-energy ion tracks in polypro-pylene. Membrany. Dubna: Ob"edinennyi in-stitut yadernykh issledovanii, 2000:31 (In Russ.).

29. Kolesnikov G.S. ed. Chemical properties and modifi-cation of polymers: Collection of articles: editor-in-chief. Moscow: Nauka, 1964:287. (In Russ.).

30. Anan'ev V.V., Peretokin T.N., Zaikov G.E., Sof'ina S.Yu. Modification of adhesive proper-ties of polymer films by corona discharge treatment. Vestnik Kazanskogo tekhnologiches-kogo universiteta. 2014;17(5):116–119. (In Russ.).

31. Vasil'kin D.P., Volkova V.P. Changes in the properties of the surface of polypropylene film during processing in a plasma jet at atmos-pheric pressure based on a direct current glow discharge. In: Physics, engineering and tech-nology of complex systems. Abstracts of the conference reports. 2020:14–15. (In Russ.).

32. Abdullina V.Kh., Sergeeva E.A., Abdullin I.Sh., Tikhonova V.P. Hydrophilization of polypropylene film thread by low-temperature, low-pressure plasma. Izvestiya vuzov. Tekhnologiya tekstil'noi promyshlennosti. 2009;4:129–131. (In Russ.).

33. Kusano Y., Madsen B., Berglund L., Oksman K. Modification of cellulose nanofibre surfac-es by He/NH3 plasma at atmospheric pressure. Cellulose. 2019;26(12):7185–7194.

34. https://doi.org/10.1007/s10570-019-02594-8

35. Konovalova O.A., Khaidarova A.R., Ibragimov R.G., Salakhov M.Kh. Study of modified porous mem-branes by atomic force microscopy. Uchenye zapiski Kazanskogo universiteta. Seriya Fiziko-matematicheskie nauki. 2018;160(1):81–88. (In Russ.).

36. Pandiyaraj K.N., Selvarajan V., Deshmukh R.R., Gao C. Modification of surface properties of polypropylene (PP) film using DC glow dis-charge air plasma. Applied Surface Science. 2009;255(7):3965–3971. https://doi.org/10.1016/j.apsusc.2008.10.090


Review

For citations:


Demin K., Agnaev S., Dondukov S., Khagleev A. PLASMA MODIFICATION OF THE SURFACE OF POLYPROPYLENE FILMS AT ATMOSPHERIC PRESSURE. Bulletin of the Siberian State Industrial University. 2025;(2):17-26. (In Russ.) https://doi.org/10.57070/2304-4497-2025-2(52)-17-26

Views: 66


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304 - 4497 (Print)
ISSN 2307-1710 (Online)