TO THE ANNIVERSARY OF THE SCIENTIFIC SCHOOL “STRENGTH AND PLASTICITY OF MATERIALS UNDER EXTERNAL ENERGY INFLUENCES”
Abstract
The paper considers the achievements of the scientific school “Strength and plasticity of materials under external energy influences” over the past 10 years. During this time, a large number of articles have been published in prestigious journals included in Q1 (Materials Letters, Journal of Materials Research and Technology, Applied Surface Science, Rapid Prototyping Journal, Materials Characterization, Metallurgical and Materials Transactions A, Surface and Coatings Technology, Engineering Failure Analysis, JOM, Metals), 9 monographs were also published in foreign publishing houses Cambridge, CISP Ltd, Springer, Taylor and Francis, Materials Science Forum LLC.
About the Authors
Viktor E. GromovRussian Federation
Dr. Sci. (Phys.-Math.), Professor, Head of the Department of Natural Sciences n.a. Professor V.M. Finkel
Yuliya A. Shlyarova
postgraduate student of the Department of Natural Sciences n.a. Professor V.M. Finkel
References
1. Gromov V.E., Yur'ev A.A., Morozov K.V. etc. Evolution of fine structure in surface layers of 100-m differentially hardened rails during long-term operation. Fundamental problems of modern materials science. 2017, vol. 14, no. 2, pp. 267–273. (In Russ.).
2. Gromov V.E., Yur'ev A.A., Ivanov Yu.F. etc. Redistribution of carbon atoms in differentially hardened rails during long-term operation. Izvestiya. Ferrous Metallurgy. 2018, vol. 61, no. 6, pp. 56–69. (In Russ.).
3. Yur'ev A.A., Gromov V.E., Morozov K.V. etc. Changing the structure and phase composition of the surface of 100-m differentially hardened rails during long-term operation. Izvestiya. Ferrous Metallurgy. 2017, vol. 60, no. 10, pp. 826–831. (In Russ.).
4. Ivanov Yu.F., Gromov V.E., Yur'ev A.A. etcr. The nature of surface hardening of differentially hardened rails during long-term operation. Deformation and destruction of materials. 2018, no. 4, pp. 67–85. (In Russ.).
5. Gromov V.E., Yur'ev A.A., Ivanov Yu.F. etc. Analysis of the mechanisms of deformation hardening of rail steel during long-term operation. Problems of ferrous metallurgy and materials science. 2017, no. 3, pp. 76–84. (In Russ.).
6. Ivanov Yu.F., Gromov V.E., Yur'ev A.A. etc. Gradients of structure and properties of surface layers of differentially hardened rails after long-term operation. Fundamental problems of modern materials science. 2017, vol. 14, no. 3, pp. 297–305. (In Russ.).
7. Yur'ev A.A., Gromov V.E., Grishunin V.A. etc. Mechanisms of destruction of lamellar perlite of differentially hardened rails during long-term operation. Fundamental problems of modern materials science. 2017, vol. 14, no. 4, pp. 438–444. (In Russ.).
8. Ivanov Yu.F., Yur'ev A.A., Gromov V.E. etc. Transformation of the carbide phase of rails during long-term operation. Izvestiya. Ferrous Metallurgy. 2018, vol. 61, no. 2, pp. 140–148. (In Russ.).
9. Gromov V.E., Yur'ev A.A., Ivanov Yu.F. etc. Evolution of the structure and properties of differentially hardened rails during long-term operation. Metallofizika i noveishie tekhnologii. 2017, vol. 39, no. 12, pp. 1599–1646. (In Russ.).
10. Gromov V.E., Yur'ev A.A., Ivanov Yu.F. etc. Transformation of the structure of 100-meter differentially hardened rails during long-term operation. Fundamental problems of modern materials science. 2018, vol. 15, no. 1, pp. 128–134. (In Russ.).
11. Kormyshev V.E., Gromov V.E., Ivanov Yu.F., Glezer A.M., Yuriev A.A., Semin A.P., Sundeev R.V. Structural phase states and properties of rails after long-term operation. Materials Letters. 2020, vol. 268, article 127499.
12. Kormyshev V.E., Ivanov Yu.F., Gromov V.E., Yur'ev A.A., Polevoi E.V. Structure and properties of differentially hardened 100-m rails after extremely long operation. Fundamental problems of modern materials science. 2019, vol. 16, no. 4, pp. 538–546. (In Russ.).
13. Kormyshev V.E., Polevoi E.V., Yur'ev A.A., Gromov V.E., Ivanov Yu.F. Formation of the structure of differentially hardened 100-meter rails during long-term operation. Izvestiya. Ferrous Metallurgy. 2020, vol. 63, no. 2, pp. 108–115. (In Russ.).
14. Kormyshev V.E., Ivanov Yu.F., Yur'ev A.A., Polevoi E.V., Gromov V.E., Glezer A.M. Evolution of structural-phase states and properties of differentially hardened 100-meter rails during extremely long-term operation. Message 1. Structure and properties of rail steel before operation. Problems of ferrous metallurgy and materials science. 2019, no. 4, pp. 50–56. (In Russ.).
15. Kormyshev V.E., Gromov V.E., Ivanov Yu.F., Glezer A.M. Structure of differentially hardened rails under intense plastic deformation. Deformation and destruction of materials. 2020, no. 8, pp. 16–20. (In Russ.).
16. Kormyshev V.E., Yur'ev A.A., Gromov V.E., Ivanov Yu.F., Rubannikova Yu.A., Polevoi E.V. Stages of transformation of plate perlite of differentially hardened rails during long-term operation. Problems of ferrous metallurgy and materials science. 2020, no. 2, pp. 51–56. (In Russ.).
17. Ivanov Yu.F., Gromov V.E., Kormyshev V.E., Glezer A.M. Structure and properties of rails after extremely long operation. Voprosy materialovedeniya. 2020, no. 2 (102), pp. 30–39. (In Russ.).
18. Yur'ev A.A., Gromov V.E., Ivanov Yu.F., Rubannikova Yu.A. Structure and properties of long-length differentially hardened rails after extremely long operation. Novokuznetsk: Polygraphist, 2020, 253 p. (In Russ.).
19. Panin V.E., Gromov V.E., Ivanov Yu.F., Yur'ev A.A., Kormyshev V.E. The role of lattice curvature in the degradation of the structure of the surface layer of metal rails during long-term operation. Doklady RAN. Fizika, tekhnicheskie nauki. 2020, vol. 494, pp. 68–71. (In Russ.).
20. Gromov V.E., Kormyshev V.E., Ivanov Yu.F., Glezer A.M. Evolution of structural-phase states and properties of differentially hardened 100-meter rails during extremely long operation. Message 2. Structure and properties of the rail head after the missed tonnage of 1411 million tons. Problems of ferrous metallurgy and materials science. 2020, no. 3, pp. 53–61. (In Russ.).
21. Ivanov Yu.F., Kormyshev V.E., Gromov V.E., Yur'ev A.A., Glezer A.M., Rubannikova Yu.A. Mechanisms of hardening of metal rails during long-term operation. Questions of materials science. 2020, no. 3 (103), pp. 17–28. (In Russ.).
22. Panin S.E., Gromov V.E., Ivanov Yu.F., Yuriev A.A., Kormyshev V.E. The Role of Lattice Curvature in Structural Degradation of the Metal Surface Layer of a Rail under Long-term Operation. Doklady Physics. 2020, vol. 65, no. 10, pp. 394–396.
23. Kormyshev V.E., Ivanov Yu.F., Gromov V.E., Yuriev A.A., Rubannikova Yu.A., Semin A.P. Formation of Fine Surface of Long Rails on Differentiated Hardening. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques. 2020, vol. 14, no. 6, pp. 1186–1189.
24. Panin V.E., Ivanov Yu.F., Yur'ev A.A., Gromov V.E., Panin S.V., Kormyshev V.E., Rubannikova Yu.A. Evolution of the fine structure and properties of metal rails during long-term operation. Physical Mesomechanics. 2020, vol. 23, no. 5, pp. 85–94. (In Russ.).
25. Ivanov Yu.F., Gromov V.E., Nikitina E.N., Alsaraeva K.V. Redistribution of carbon in steel with a bainite structure during deformation. Fundamental problems of modern materials science. 2015, vol. 12, no. 3, pp. 278–281. (In Russ.).
26. Gromov V.E., Nikitina E.N., Ivanov Yu.F. Evolution of carbide and defective subsystems of steel with a bainite structure during deformation. Problems of ferrous metallurgy and materials science. 2015, no. 3, pp. 74–80. (In Russ.).
27. Nikitina E.N., Gromov V.E., Alsaraeva K.V. Evolution of a defective subsystem of structural steel with a bainite structure during deformation. Izvestiya. Ferrous Metallurgy. 2015, vol. 58, no. 8, pp. 603–607. (In Russ.).
28. Ivanov Yu.F., Gromov V.E., Nikitina E.N. Evolution of the carbide subsystem of structural steel with a bainite structure under deformation by single-walled compression. Fundamental problems of modern materials science. 2015, vol. 12, no. 2, pp. 227–230. (In Russ.).
29. Ivanov Yu.F., Nikitina E.N., Gromov V.E. Carbon distribution in bainitic steel subjected to deformation. AIP Conference Proceedings. 2015, vol. 1683, article 020075.
30. Gromov V.E., Nikitina E.N., Ivanov Yu.F., Aksenova K.V., Kornet Yu.F. Deformation hardening of steel with a bainite structure. Institut metallofiziki NAN Ukrainy. Uspekhi fiziki metallov. 2015, vol. 16, no. 4, pp. 299–328. (In Russ.).
31. Gromov V.E., Nikitina E.N., Ivanov Yu.F., Aksenova K.V., Semina O.A. Bainite steel: structure and work hardening. Vestnik Magnitogorskogo gosudarstvennogo tekhnicheskogo universiteta im. G.I. Nosova. 2016, vol. 14, no. 1, pp. 87–100.
32. Ivanov Yu.F., Gromov V.E., Glezer A.M., Nikitina E.N., Aksenova K.V. Localization of plastic deformation at the nanoscale in steel with a bainite structure. Deformation and destruction of materials. 2016, no. 8, pp. 18–21. (In Russ.).
33. Gromov V.E., Ivanov Yu.F., Vorob'ev S.V., Gorbunov S.V., Konovalov S.V. Modification of structural-phase states of stainless steel surface by electron beam processing. Problems of ferrous metallurgy and materials science. 2010, no. 4, pp. 31–37. (In Russ.).
34. Gorbunov S.V., Vorob'ev S.V., Ivanov Yu.F., Gromov V.E., Konovalov S.V. Formation of the gradient structure of the surface layer during electron beam processing of austenitic steel. Fizika i khimiya obrabotki materialov. 2011, no. 1, pp. 61–65. (In Russ.).
35. Ivanov Yu.F., Gorbunov S.V., Vorob'ev S.V., Koval' N.N., Konovalov S.V., Gromov V.E. Structure of the surface layer, which is formed in steel 08KH18N10T, treated by high-intensity electron beam, in terms of high cycle fatigue. Fizicheskaya mezomekhanika. 2011, vol. 14, no. 1, pp. 75–82. (In Russ.).
36. Gromov V.E., Ivanov Yu.F., Vorob'ev S.V., Gorbunov S.V., Konovalov S.V. Structural-phase transformations at multicycle fatigue of stainless steel treated with electron beams. Problems of ferrous metallurgy and materials science. 2011, no. 1, pp. 57–63. (In Russ.).
37. Ivanov Yu.F., Gromov V.E., Gorbunov S.V., Vorob'ev S.V., Konovalov S.V. Gradient structural-phase states formed in steel 08X18N10T with multicycle fatigue before destruction. Physics of Metals and Metallovedenie. 2011, vol. 112, no. 1, pp. 85–93. (In Russ.).
38. Gromov V.E., Gorbunov S.V., Ivanov Yu.F., Vorob'ev S.V., Konovalov S.V. Formation of surface gradient structural-phase states during electron-beam processing of stainless steel. Surface. X-ray, synchrotron and neutron studies. 2011, no. 10, pp. 62–67. (In Russ.).
39. Ivanov Yu.F., Koval' N.N., Gorbunov S.V., Vorob'ev S.V., Konovalov S.V., Gromov V.E. Multicycle fatigue of stainless steel treated with a high-intensity electron beam: the structure of the surface layer. Izvestiya vuzov. Fizika. 2011, vol. 54, no. 5, pp. 61–69. (In Russ.).
40. Konovalov S.V., Ivanov Yu.F., Vorob'ev S.V., Gorbunov S.V., Gromov V.E. The influence of current treatment on the formation of gradient structural-phase states in austenitic steel. Bulletin of the Tambov University. Series: Natural and Technical Sciences. 2010, vol. 15, no. 3-1, pp. 823–824. (In Russ.).
41. Ivanov Yu.F., Gorbunov S.V., Gromov V.E., Vorob'ev S.V., Konovalov S.V. Formation of the structural-phase state of the surface layer of steel 08X18N10T when treated with a high-intensity electron beam. Materials Science. 2011, no. 5, pp. 43–47. (In Russ.).
42. Ivanov Yu.F., Gromov V.E., Bessonov D.A., Vorob'ev S.V., Teresov A.D., Koval' N.N., Konovalov S.V. Phase composition and defect substructure of steel 20KH13 treated by the electron beam in the mode of surface melting. Fundamental problems of modern materials science. 2011, vol. 8, no. 3, pp. 28–33. (In Russ.).
43. Ivanov Yu.F., Gromov V.E., Vorob'ev S.V., Bessonov D.A., Kolubaeva Yu.A., Konovalov S.V. Structural-phase state of the surface layer formed in steel 20X13 as a result of irradiation with a high-intensity electron beam. Physical Mesomechanics. 2011, vol. 14, no. 6, pp. 111–116. (In Russ.).
44. Ivanov Yu.F., Gromov V.E., Bessonov D.A., Vorob'ev S.V., Konovalov S.V. Evolution of the structure and phase composition of 20X13 steel in the process of strengthening electron beam processing and subsequent fatigue loading. Deformation and destruction of materials. 2011, no. 12, pp. 19–23. (In Russ.).
45. Bessonov D.A., Vorob'ev S.V., Ivanov Yu.F. Increasing the fatigue life of steel 20X13 by electron beam processing. Izvestiya. Ferrous Metallurgy. 2011, no. 10, pp. 48–49. (In Russ.).
46. Ivanov Yu.F., Gromov V.E., Sizov V.V., Vorob'ev S.V., Sofroshenkov A.F. Increasing the fatigue life of steel 20X23N18 by high-intensity electron beam processing. Fundamental problems of modern materials science. 2011, vol. 8, no. 4, pp. 131–36. (In Russ.).
47. Vorob'ev S.V., Ivanov Yu.F., Gromov V.E., Bessonov D.A., Koval' N.N., Teresov A.D. Formation of the gradient structure and phase composition of the surface layers of steel 20X13 after irradiation with a high-intensity electron beam. Fizika i khimiya obrabotki materialov. 2012, no. 4, pp. 97–99. (In Russ.).
48. Bessonov D.A., Vorob'ev S.V., Gromov V.E., Ivanov Yu.F., Tsellermaer V.Ya. Evolution of the grain structure of the surface layer of 20X13 steel subjected to electron beam processing. Izvestiya. Ferrous Metallurgy. 2012, no. 2, pp. 44–48. (In Russ.).
49. Sizov V.V., Gromov V.E., Ivanov Yu.F., Vorob'ev S.V., Konovalov S.V. Evolution of the grain structure of the surface layer of 20X23H18 steel subjected to electron beam processing and multicycle loading. Izvestiya. Ferrous Metallurgy. 2012, no. 10, pp. 56–60. (In Russ.).
50. Vorob'ev S.V., Gromov V.E., Ivanov Yu.F., Sizov V.V., Sofroshenkov A.F. Formation of nanocrystalline structure and fatigue durability of stainless steel. Izvestiya. Ferrous Metallurgy. 2012, no. 4, pp. 51–53. (In Russ.).
51. Sizov V.E., Gromov V.E., Ivanov Yu.F., Vorob'ev S.V., Konovalov S.V. Fatigue failure of stainless steel after electron beam processing. Izvestiya. Ferrous Metallurgy. 2012, no. 6, pp. 35–37. (In Russ.).
52. Sizov V.V., Gromov V.E., Ivanov Yu.F., Vorob'ev S.V., Konovalov S.V. Formation and evolution of the grain structure of stainless steel during electron beam processing and multicycle fatigue. Fundamental problems of modern materials science. 2012, no. 2, pp. 136–140. (In Russ.).
53. Ivanov Yu.F., Gromov V.E., Sizov V.V., Vorob'ev S.V., Konovalov S.V. Increasing the fatigue life of stainless steel by electron beam processing. Problems of ferrous metallurgy and materials science. 2012, no. 1, pp. 66–75. (In Russ.).
54. Bessonov D.A., Vorob'ev S.V., Gromov V.E., Ivanov Yu.F. Formation of nanocrystalline structures in stainless steel subjected to electron beam processing and multi-cycle fatigue loading. Nanoengineering. 2013, no. 3, pp. 20–24. (In Russ.).
55. Gromov V.E., Ivanov Yu.F., Sizov V.V., Vorob'ev S.V., Konovalov S.V. Increasing the fatigue life of stainless steel by electron beam surface treatment. Surface. X-ray, synchrotron and neutron studies. 2013, no. 1, pp. 99–104. (In Russ.).
56. Ivanov Yu.F., Gromov V.E., Sizov V.V., Vorob'ev S.V., Konovalov S.V. Structural-scale levels of deformation of steel 20X23H18 subjected to fatigue failure after electron beam processing. Physical Mesomechanics. 2013, vol. 16, no. 1, pp. 85–90. (In Russ.).
57. Ivanov Yu.F., Gromov V.E., Sizov V.V., Vorob'ev S.V., Konovalov S.V. Evolution of structure and phase composition of stainless steel 20X23H18 under cyclic deformation. Materials Science. 2013, no. 4, pp. 34–39. (In Russ.).
58. Gromov V.E., Vorob'ev S.V., Sizov V.V., Konovalov S.V., Ivanov Yu.F. Structural-scale levels of increasing fatigue durability of steels and alloys by electron beam processing. Izvestiya. Ferrous Metallurgy. 2015, vol. 58, no. 5, pp. 346–351. (In Russ.).
59. Konovalov S.V., Vorob'ev S.V., Gromov V.E., Ivanov Yu.F., Komissarova I.A., Kobzareva T.Yu. The role of electron beam processing in changing the structure and phase composition of steels and alloys subjected to multicycle fatigue tests. Problems of ferrous metallurgy and materials science. 2015, no. 4, pp. 92–97. (In Russ.).
60. Vorob'ev S.V. Increasing the fatigue life of steels of various structural classes by electron beam processing. Izvestiya. Ferrous Metallurgy. 2016, no. 4, pp. 260–262. (In Russ.).
61. Vorob'ev S.V., Glezer A.M., Bessonov D.A., Konovalov S.V., Gromov V.E., Ivanov Yu.F. Regularities of the influence of electron beam processing on the phase composition and defective substructure of 20X13 steel at fatigue. Problems of ferrous metallurgy and materials science. 2016, no. 3, pp. 68–73. (In Russ.).
62. Konovalov S.V., Vorob'ev S.V., Gromov V.E., Ivanov Yu.F., Komissarova I.A., Kobzareva T.Yu. The role of electron beam processing in changing the structure and phase composition of steels and alloys subjected to multicycle fatigue tests. Problems of ferrous metallurgy and Mate-rials Science. 2015, no. 4, pp. 92–97. (In Russ.).
63. Konovalov S.V., Komissarova I.A., Kosinov D.A. etc. Structure of a titanium alloy modified by electron beams and destroyed by fatigue. Letters about materials. 2017, vol. 7, no. 3 (27), pp. 266–271. (In Russ.).
64. Konovalov S.V., Komissarova I.A., Chen' C. etc. Investigation of a titanium alloy subjected to electron-beam processing leading to an increase in fatigue life. Fundamental problems of modern materials science. 2018, vol. 15, no. 1, pp. 109–113. (In Russ.).
65. Komissarova I.A., Kosinov D.A., Konovalov S.V. etc. Changes in the structure of titanium alloy VT1-0 under high cycle fatigue subjected to current impulse action. Polzunovskii vestnik. 2018, no. 3, pp. 139–143. (In Russ.).
66. Komissarova I.A., Konovalov S.V., Kosinov D.A. Influence of current pulse action on the structure of a titanium alloy at multicycle fatigue. Fundamental problems of modern materials science. 2018, vol. 15, no. 3, pp. 409–415. (In Russ.).
67. Konovalov S.V., Komissarova I.A., Glezer A.M., Ivanov Yu.F., Gromov V.E., Chen' S. The effect of electron beam processing on the structure of technically pure titanium subjected to fatigue failure. Deformatsiya i razrushenie materialov. 2019, no. 9, pp. 42–48. (In Russ.).
68. Romanov D.A., Zhmakin Yu.D., Budovskikh E.A. etc. Formation of electrocontact surface layers of the W – C – Cu system with the use of an upgraded electric explosive installation EVU 60/10M. Fundamental problems of modern materials science. 2011, vol. 8, no. 2, pp. 19–23. (In Russ.).
69. Romanov D.A., Budovskikh E.A., Zhmakin Yu.D., Gromov V.E. Experience and prospects of using an electric explosive installation EVU 60/10 for modifying the surface of materials. Izvestiya. Ferrous Metallurgy. 2011, no. 6, pp. 20–24. (In Russ.).
70. Romanov D.A., Budovskikh E.A., Gromov V.E. Surface relief and structure of electro-explosive composite surface layers of the molybdenum-copper system. Poverkhnost'. Rentgenovskie, sinkhrotronnye i neitronnye issledovaniya. 2011, no. 11, pp. 95–100. (In Russ.).
71. Romanov D.A., Budovskikh E.A., Gromov V.E. Surface relief and structure of composite surface layers of W–Cu and Mo–Cu systems formed by electroexplosive method. Fizika i khimiya obrabotki materialov. 2011, no. 5, pp. 51–55. (In Russ.).
72. Romanov D.A., Budovskikh E.A., Gromov V.E. Surface relief and structure of pseudo-alloy coatings of the molybdenum-copper system formed by electroexplosive method. Hardening technologies and coatings. Uprochnyayushchie tekhnologii i pokrytiya. 2011, no. 10, pp. 19–21. (In Russ.).
73. Romanov D.A., Budovskikh E.A., Ionina A.V., Gromov V.E. Electroexplosive spraying of electroerosion-resistant coatings of Ti – B – Cu system. Fundamental problems of modern materials science. 2011, vol. 8, no. 4, pp. 60–64. (In Russ.).
74. Romanov D.A., Budovskikh E.A., Gromov V.E. etc. Structure and phase composition of electroerosion-resistant coatings of the TiB2 – Cu system formed by the method of electroexplosive spraying. Obrabotka metallov: tekhnologiya, oborudovanie, instrumenty. 2012, no. 3, pp. 87–91. (In Russ.).
75. Romanov D.A., Budovskikh E.A., Gromov V.E. Surface relief and structure of electro-explosive composite surface layers of the titanium-boron-copper system. Uprochnyayushchie tekhnologii i pokrytiya. 2012, no. 9, pp. 30–33. (In Russ.).
76. Romanov D.A., Budovskikh E.A., Gromov V.E. Electrocontact coatings of the Mo–C–Cu system obtained by electroexplosive spraying. Perspektivnye materialy. 2012, no. 6, pp. 75–78. (In Russ.).
77. Romanov D.A., Budovskikh E.A., Gromov V.E. Formation of structure, phase composition and properties of electroerosion-resistant coatings obtained by the method of electroexplosive spraying. Zagotovitel'nye proizvodstva v mashinostroenii. 2013, no. 1, pp. 36–43. (In Russ.).
78. Romanov D.A., Olesyuk O.A., Budovskikh E.A. etc. Structure and properties of electro-erosion-resistant coatings formed by the method of electroexplosive spraying. Obrabotka metallov: tekhnologiya, oborudovanie, instrumenty. 2013, no. 1, pp. 53–57. (In Russ.).
79. Budovskikh E.A., Gromov V.E., Romanov D.A. Mechanism of formation of high adhesion of electroexplosive coatings with a metal base. Doklady akademii nauk. 2013, vol. 449, no. 1, pp. 25–27. (In Russ.).
80. Olesyuk O.V., Romanov D.A., Budovskikh E.A., Gromov V.E. The structure of wear-resistant coatings of TiB2–Al and TiCMo systems obtained by electroexplosive spraying. Fundamental problems of modern materials science. 2013, vol. 10, no. 3, pp. 417–423. (In Russ.).
81. Romanov D.A., Budovskikh E.A., Gromov V.E. Features of the structure and properties of electroerosion-resistant coatings formed by the method of electroexplosive spraying. Izvestiya vuzov. Poroshkovaya metallurgiya i funktsional'nye pokrytiya. 2014, no. 2, pp. 58–62. (In Russ.).
82. Romanov D.A., Olesyuk O.V., Budovskikh E.A. etc. Structure and phase composition of wear-resistant coatings of the TiB2 – Al system obtained by electroexplosive spraying. Izvestiya vuzov. Poroshkovaya metallurgiya i funktsional'nye pokrytiya. 2014, no. 3, pp. 60–65. (In Russ.).
83. Panin V.E., Gromov V.E., Romanov D.A. etc. Physical bases of structure formation in electroexplosive coatings. Doklady akademii nauk. 2017, vol. 472, no. 6, pp. 650–653. (In Russ.).
84. Romanov D.A., Olesyuk O.V., Budovskikh E.A. etc. The structure of electro-explosive composite coatings from immiscible compo-nents of the Cu – Mo system after electron beam processing. Obrabotka metallov: tekhnologiya, oborudovanie, instrumenty. 2014, no. 1, pp. 54–60. (In Russ.).
85. Romanov D.A., Olesyuk O.V., Konovalov S.V. etc. Structure of composite coatings of the W–C–Cu system obtained by electroexplosive spraying and subsequent electron beam processing. Perspektivnye materialy. 2014, no. 4, pp. 64–69. (In Russ.).
86. Romanov D.A., Olesyuk O.V., Budovskikh E.A. etc. The structure of composite coatings made of immiscible components of the Cu – Mo system obtained by electroexplosive spraying and subsequent electron beam processing. Bulletin of the Siberian State Industrial University. 2014, no. 1, pp. 7–10. (In Russ.).
87. Romanov D.A., Olesyuk O.V., Budovskikh E.A. etc. Structure of electroexplosive composite coatings of the TiB2 – Cu system after electron beam processing. Fizika i ximiya obrabotki materialov. 2015, no. 1, pp. 73–78. (In Russ.).
88. Romanov D.A., Olesyuk O.V., Budovskikh E.A. etc. Structural and phase states and tribological properties of electroexplosive composite coatings on copper after electron beam processing. Poverkhnost'. Rentgenovskie, sinkhrotronnye i neitronnye issledovaniya. 2015, no. 7, pp. 50–56. (In Russ.).
89. Olesyuk O.V., Konovalov S.V., Romanov D.A. Influence of electron beam processing on tribological properties of electroexplosive electroerosion-resistant coatings. Modern problems of science and education. 2014, no 2. [Elektronnyi resurs]. URL: http://www.scienceeducation.ru/116-12659. (Data obrashcheniya: 01.02.2022). (In Russ.).
90. Romanov D.A., Goncharova E.N., Budovskikh E.A. etc. Structural-phase state of the Si – Cr electroerosive coating formed on copper by the combined method. Uprochnyayushchie tekhnologii i pokrytiya. 2016, no. 7, pp. 25–29. (In Russ.).
91. Romanov D.A., Goncharova E.N., Gromov V.E. etc. Elemental and phase analysis of the coating TiB2 – Mo and TiB2 – Ni formed on steel by the electroexplosive method after electron beam processing. Fundamental problems of modern materials science. 2015, vol. 12, no. 1, pp. 118–125. (In Russ.).
92. Romanov D.A., Goncharova E.N., Budovskikh E.A. etc. The structure of electro-explosive composite coatings of the TiB2 – Ni system. Perspective materials. 2015, no. 5, pp. 69–77. (In Russ.).
93. Romanov D.A., Protopopov E.V., Bataev V.A. etc. Analysis of the structure and properties of electroexplosive coatings of the TiC – Ni system on stamped steel after electron beam processing. Vektor nauki Tol'yattinskogo gosudarstvennogo universiteta. 2017, no. 4 (42), pp. 108–118. (In Russ.).
94. Romanov D.A., Protopopov E.V. Structure, phase composition and properties of electroexplosive wear-resistant coatings after electron beam processing. Izvestiya. Ferrous Metallurgy. 2017, vol. 60, no. 12, pp. 972 – 979. (In Russ.).
95. Romanov D.A., Goncharova E.N., Budovskikh E.A. etc. Elemental and phase analysis of the TiB2 – Mo coating formed on steel by the electro-explosive method. Fizika i khimiya obrabotki materialov. 2016, no. 1, pp. 47–52. (In Russ.).
96. Romanov D.A., Goncharova E.N., Budovskikh E.A. etc. Structural-phase composition and properties of the TiC – Ni electroerosive coating formed on medium-carbon steel by the combined method. Perspective Materials. 2016, no. 10, pp. 62–68. (In Russ.).
97. Romanov D.A., Goncharova E.N., Budovskikh E.A. etc. Analysis of the structure of electro-explosive composite coatings of the TiC – Ni system on steel after electron beam processing. Metals. 2016, no. 6, pp. 69–77. (In Russ.).
98. Molotkov S.G., Romanov D.A., Budovskikh E.A., Sofroshenkov A.F. Analysis of the features of the formation of the structure of electro-explosive coatings on the border with the base. Izvestiya. Ferrous Metallurgy. 2012, no. 2, pp. 69–70. (In Russ.).
99. Romanov D.A., Budovskikh E.A., Gromov V.E. Formation of globular features of the structure of electroexplosive coatings. Fundamental problems of modern materials science. 2016, vol. 13, no. 3, pp. 355–357. (In Russ.).
100. Romanov D.A., Molotkov S.G., Stepikov M.A., Gromov V.E. Calculation of the temperature field taking into account the heat of chemical reactions during electroexplosive nickel plating. Fundamental problems of modern materials science. 2017, vol. 14, no. 1, pp. 100–107. (In Russ.).
101. Romanov D.A., Molotkov S.G., Kolmakova T.V. etc. Modeling of Richtmayer-Meshkov instability of the coating-substrate interface during electroexplosive nickel plating of aluminum. Fundamental problems of modern materials science. 2017, vol. 14, no. 2, pp. 189–192. (In Russ.).
102. Romanov D.A., Protopopov E.V. Model of electroerosive destruction of composite electroexplosive coatings in conditions of spark erosion. Izvestiya. Ferrous Metallurgy. 2018, vol. 61, no. 2, pp. 143–147. (In Russ.).
103. Romanov D.A., Moskovskii S.V., Gromov V.E., Sosnin K.V. Electroexplosive electroerosion-resistant coatings of the Ag–W system for electrical contacts of power mine equipment. Naukoemkie tekhnologii razrabotki i ispol'zovaniya mineral'nykh resursov. 2018, no. 4, pp. 265–269. (In Russ.).
104. Tong C.-J., Chen Y.-L., Yeh J.-W., Lin S.-J., Lee P.-H., Shun T.-T., Tsau C.-H., Chang S.-Y. Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metallurgical and Materials Transactions A. 2005, vol. 36, pp. 881–893.
105. Chen Y.Y., Duval T., Hung U.D., Yeh J.W., Shih H.C. Microstructure and electrochemical properties of high entropy alloys – a comparison with type-304 stainless steel. Corrosion Science. 2005, vol. 47, pp. 2257–2279.
106. Li A., Zhang X. Thermodynamic analysis of the simple microstructure of AlCrFeNiCu high-entropy alloy with multi-principal ele-ments. Acta Metallurgica Sinica (English Letters). 2009, vol. 22, pp. 219–224.
107. Tsai C.-W., Tsai M.-H., Yeh J.-W., Yang C.-C. Effect of temperature on mechanical properties of Al0.5CoCrCuFeNi wrought alloy. Journal of Alloys and Compounds. 2010, vol. 490, pp. 160–165.
108. Braic M., Braic V., Balaceanu M., Zoita C.N., Vladescu A., Grigore E. Characteristics of (TiAlCrNbY)C films deposited by reactive magnetron sputtering. Surface and Coatings Technology. 2010, vol. 204, pp. 2010–2014.
109. Huang P.-K., Yeh J.-W. Effects of nitrogen content on structure and mechanical properties of multi-element (AlCrNbSiTiV)N coating. Surface and Coatings Technology. 2009, vol. 203, pp. 1891–1896.
110. Hu Z., Zhan Y., Zhang G., She J., Li C. Effect of rare earth Y addition on the microstructure and mechanical properties of high entropy AlCoCrCuNiTi alloys. Materials & Design. 2010, vol. 31, pp. 1599–1602.
111. Lin M.-I., Tsai M.-H., Shen W.-J., Yeh J.-W. Evolution of structure and properties of multi-component (AlCrTaTiZr)Ox films. Thin Solid Films. 2010, vol. 518, pp. 2732–2737.
112. Dolique V., Thomann A.-L., Brault P., Tessier Y., & Gillon P. Thermal stability of AlCoCrCuFeNi high entropy alloy thin films studied by in-situ XRD analysis. Surface and Coatings Technology. 2010, vol. 204, pp. 1989–1992.
113. Zhang K.B., Fu Z.Y., Zhang J.Y., Shi J., Wang W.M., Wang H., Wang Y.C., Zhang Q.J. Annealing on the structure and properties evolution of the CoCrFeNiCuAl high-entropy alloy. Journal of Alloys and Compounds. 2010, vol. 502, pp. 295–299.
114. Singh S., Wanderka N., Murty B.S., Glatzel U., Banhart J. Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy. Acta Materialia. 2011, vol. 59, pp. 182–190.
115. Chuang M.-H., Tsai M.-H., Wang W.-R., Lin S.-J., Yeh J.-W. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Materialia. 2011, vol. 59, pp. 6308–6317.
116. Hsu Y.-J., Chiang W.-C., Wu J.-K. Corro-sion behavior of FeCoNiCrCux high-entropy alloys in 3.5 % sodium chloride solution. Materials Chemistry and Physics. 2005, vol. 92, pp. 112–117.
117. Lin C.-M., Tsai H.-L. Evolution of micro-structure, hardness, and corrosion properties of high-entropy Al0.5CoCrFeNi alloy. Intermetallics. 2011, vol. 19, pp. 288–294.
118. Liu L., Zhu J.B., Zhang C., Li J.C., Jiang Q. Microstructure and the properties of FeCoCuNiSnx high entropy alloys. Materials Science and Engineering: A. 2012, vol. 548, pp. 64–68.
119. Manzoni A., Daoud H., Völkl R., Glatzel U., Wanderka N. Phase separation in equiatomic AlCoCrFeNi high-entropy alloy. Ultramicroscopy. 2013, vol. 132, pp. 212–215.
120. Li B., Peng K., Hu A., Zhou L., Zhu J., Li D. Structure and properties of FeCo-NiCrCu0.5Alx high-entropy alloy. Transac-tions of Nonferrous Metals Society of China. 2013, vol. 23, pp. 735–741.
121. Qiu X.-W. Microstructure and properties of AlCrFeNiCoCu high entropy alloy prepared by powder metallurgy. Journal of Alloys and Compounds. 2013, vol. 555, pp. 246–249.
122. Tariq N.H., Naeem M., Hasan B.A., Akhter J.I., Siddique M. Effect of W and Zr on structural, thermal and magnetic properties of AlCoCrCuFeNi high entropy alloy. Journal of Alloys and Compounds. 2013, vol. 556, pp. 79–85.
123. Daoud H.M., Manzoni A., Völkl R., Wanderka N., Glatzel U., Microstructure and Tensile Behavior of Al8Co17Cr17Cu8Fe17Ni33 (at. %) High-Entropy Alloy. JOM. 2013, vol. 65, pp. 1805–1814.
124. Pradeep K.G., Wanderka N., Choi P., Banhart J., Murty B.S., Raabe D. Atomic-scale compositional characterization of a nanocrystalline AlCrCuFeNiZn high-entropy alloy using atom probe tomography. Acta Materialia. 2013, vol. 61, pp. 4696–4706.
125. Chen M.-R., Lin S.-J., Yeh J.-W., Chuang M.-H., Lee P.-H., Huang Y.-S. Effect of vanadium addition on the microstructure, hardness, and wear resistance of Al0.5CoCrCuFeNi high-entropy alloy. Metallurgical and Materials Transactions A-physical Metallurgy and Materials Science – METALL MATER TRANS A. 2006, vol. 37, pp. 1363–1369.
126. Yeh J.W., Chen Y.L., Lin S.J., Chen S.K. High-Entropy Alloys – A New Era of Exploitation. Materials Science Forum. 2007, vol. 560, pp. 1–9.
127. Hsu U.S., Hung U.D., Yeh J.W., Chen S.K., Huang Y.S., Yang C.C. Alloying behavior of iron, gold and silver in AlCoCrCuNi-based equimolar high-entropy alloys. Materials Science and Engineering: A. 2007, vol. 460-461, pp. 403–408.
128. Wang X.F., Zhang Y., Qiao Y., Chen G.L. Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys. Intermetallics. 2007, vol. 15, pp. 357–362.
129. Tung C.-C., Yeh J.-W., Shun T., Chen S.-K., Huang Y.-S., Chen H.-C. On the elemental effect of AlCoCrCuFeNi high-entropy alloy system. Materials Letters. 2007, vol. 61, pp. 1–5.
130. Wang Y.P., Li B.S., Ren M.X., Yang C., Fu H.Z. Microstructure and compressive properties of AlCrFeCoNi high entropy alloy. Materials Science and Engineering: A. 2008, vol. 491, pp. 154–158.
131. Chen M.-R., Lin S.-J., Yeh J.-W., Chen S.-K., Huang Y.-S., Tu C.-P. Microstructure and Properties of Al0.5CoCrCuFeNiTiх (х = 0 – 2.0) High-Entropy Alloys. Materials Transactions. 2006, vol. 47, pp. 1395–1401.
132. Wen L.H., Kou H.C., Li J.S., Chang H., Xue X.Y., Zhou L. Effect of aging temperature on microstructure and properties of AlCoCrCuFeNi high-entropy alloy. Intermetallics. 2009, vol. 17, pp. 266–269.
133. Strife J., Passoja D. The effect of heat treatment on microstructure and cryogenic fracture properties in 5Ni and 9Ni steel. Metallurgical Transactions. 1980, vol. 11, pp. 1341–1350.
134. Ng C., Guo S., Luan J., Shi S., Liu C. En-tropy-driven phase stability and slow diffusion kinetics in an Al0.5CoCrCuFeNi high entropy alloy. Intermetallics. 2012, vol. 31, pp. 165–172.
135. Jones N.G., Frezza A., Stone H.J. Phase equilibria of an Al0.5CrFeCoNiCu High En-tropy Alloy. Materials Science and Engineering: A. 2014, vol. 615, pp. 214–221.
136. Shun T.-T., Du Y.-C. Age hardening of the Al0.3CoCrFeNiC0.1 high entropy alloy. Journal of Alloys and Compounds. 2009, vol. 478, pp. 269–272.
137. Kao Y.-F., Chen T.-J., Chen S.-K., Yeh J.-W. Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys. Journal of Alloys and Compounds. 2009, vol. 488, pp. 57–64.
138. Tsai C.-W., Chen Y.-L., Tsai M.-H., Yeh J.-W., Shun T.-T., Chen S.-K. Deformation and annealing behaviors of high-entropy alloy Al0.5CoCrCuFeNi. Journal of Alloys and Compounds. 2009, vol. 486, pp. 427–435.
139. Otto F., Dlouhý A., Somsen C., Bei H., Eggeler G., George E.P. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Materialia. 2013, vol. 61, pp. 5743–5755.
140. Gludovatz B., Hohenwarter A., Catoor D., Chang E., George E., Ritchie R. A Fracture-Resistant High-Entropy Alloy for Cryogenic Applications. Science. 2014, vol. 345, pp. 1153–1158.
141. Mills W.J. Fracture toughness of type 304 and 316 stainless steels and their welds. International Materials Reviews. 1997, vol. 42, pp. 45–82.
142. Zhang Y., Zuo T.T., Tang Z., Gao M.C., Dahmen K.A., Liaw P.K., Lu Z.P. Microstructures and properties of high-entropy alloys. Progress in Materials Science. 2014, vol. 61, pp. 1–93.
143. Cantor B. Multicomponent and High Entropy Alloys. Entropy. 2014, vol. 16, pp. 4749–4768.
144. Miracle D.B., Senkov O.N. A critical review of high entropy alloys and related concepts. Acta Ma-terialia. 2017, vol. 122, pp. 448–511.
145. Zhang W., Zhang Y. Science and technology in high-entropy alloys. Science China Earth Science. 2018, pp. 2–22.
146. Osintsev K.A., Gromov V.E., Konovalov S.V., Ivanov Yu.F., Panchenko I.A. High entropy alloy: structure, mechanical properties, deformation mechanisms and application. Izvestiya. Ferrous Metallurgy. 2021, vol. 64, no. 4, pp. 249–258. (In Russ.).
147. Pogrebnyak A.D., Bagdasaryan A.A., Ya-kushchenko I.V., Beresnev V.M. Structure and properties of high-entropy alloys and nitride coatings based on them. Advances in Chemistry. 2014, vol. 83, pp. 1027–1061. (In Russ.).
148. Rogachev A.S. Structure, stability and properties of high-entropy alloys. Physics of metals and metal science. 2020, vol. 121, pp. 807–841. (In Russ.).
149. George E.P., Curtin W.A., Tasan C.C. High entropy alloys: A focused review of mechanical properties and deformation mechanisms. Acta Materialia. 2020, vol. 188, pp. 435–474.
150. Zaguliaev D., Gromov V., Konovalov S., Ivanov Yu. Electron-Ion-Plasma Modification of a Hypoeutectoid Al–Si Alloy. Great Britain: Taylor & Francis Group: Home, 2020, 268 p.
151. Konovalov S., Zaguliaev D., Ivanov Y., Gromov V., Abaturova A. Modification of Al-10Si–2Cu alloy surface by intensive pulsed electron beam. Journal of Materials Research and Technology. 2020, vol. 9 (3), pp. 5591–5598.
152. Zaguliaev D., Ivanov Yu., Konovalov S., Abaturova A., Gromov V., Rubannikova Yu., Semin A. Effect of electron-plasma treatment on the microstructure of Al – 11 wt % Si alloy. Materials Research. 2020, vol. 23 (2), article 20200057.
153. Zaguliaev D., Konovalov S., Ivanov Y., Abaturova A., Leonov A. Microstructure and Microhardness of Piston Alloy Al-10Si-2Cu Irradiated by Pulsed Electron Beam. Archives of foundry engineering. 2020, vol. 20 (3/2020), pp. 92–98.
154. Gromov V.E., Ivanov Yu.F., Zagulyaev D.V., Petrikova E.A., Konovalov S.V., Teresov A.D., Rygina M.E. Evolution of the structure and properties of AK10M2N silumin under irradiation with a high-intensity pulsed electron beam. Inorganic Materials. 2018, vol. 54, no. 12, pp. 1308–1314.
155. Zagulyaev D.V., Konovalov S.V., Gromov V.E., Glezer A.M., Ivanov Yu.F., Sundeev R.V. Structure and properties changes of Al–Si alloy treated by pulsed electron beam. Materials Letters. 2018, vol. 2209, pp. 377–380.
156. Ivanov Yu.F., Gromov V.E., Konovalov S.V., Zagulyaev D.V., Petrikova E.A. Structural-phase state and the properties of silumin after electron-beam surface treatment. Russian Metallurgy (Metally). 2019, vol. 4, pp. 398–402.
157. Zagulyaev D.V., Gromov V.E., Konovalov S.V., Ivanov Yu.F. Increase in wear resistance of the surface layers of AK10M2N silumin at electron-beam treatment. Inorganic Materials: Applied Research. 2019, vol. 10 (3), pp. 622–628.
158. Gromov V., Konovalov S., Ivanov Y., Zaguliaev D., Petrikova E., Serenkov Y. Evolution of structure-phase states of hypoeutectic silumin irradiated by intensive pulse electron beams. Materials Research Express. 2019, vol. 6 (7), pp. 076574.
159. Utevsky L.M. Diffraction electron microscopy in metallurgy. Moscow: Metallurgiya, 1973, 584 p. (In Russ.).
160. Zaguliaev D., Konovalov S., Ivanov Y., Gromov V. Effect of electron-plasma alloying on structure and mechanical properties of Al-Si alloy. Applied Surface Science. 2019, vol. 498, article 143767.
161. Zagulyaev D.V., Shlyarov V.V., Gromov V.E., Rubannikova Yu.A., Semin A.P., Te-resov A.D. Analysis of changes in structure and microhardness of Al–11Si–2Cu alloy after complex treatment. AIP Conference Proceedings. 2019, vol. 2167, article 020398.
162. Zaguliaev D., Gromov V., Rubannikova Yu., Konovalov S., Ivanov Yu., Romanov D., Semin A. Structure and phase states modification of AL – 11SI – 2CU alloy processed by ion-plasma jet and pulsed electron beam. Surface and Coatings Technology. 2020, vol. 383, article 125246.
163. Ivanov Yu.F., Gromov V.E., Zagulyaev D.V., Konovalov S.V., Rubannikova Yu.A., Semin A.P. Nanostructurisation of hypoeutectic silumin by electroexplosion alloying and subsequent electron beam processing. International Journal of Nanotechnology. 2019, vol. 16, pp. 619–628.
164. Ivanov Yu., Gromov V., Zaguliaev D., Glezer A., Sundeev R., Rubannikova Y., Semin A. Modification of surface layer of hypoeutectic silumin by electroexplosion alloying followed by electron beam processing. Materials Letters. 2019, vol. 253, pp. 55–58.
165. Zaguliaev D., Konovalov S., Ivanov Yu., Gromov V., Petrikova E. Microstructure and mechanical properties of doped and electron-beam treated surface of hypereutectic Al–11.1 % Si alloy. Journal of Materials Research and Technology. 2019, vol. 8 (5), pp. 3835–3842.
166. Gromov V.E., Ivanov Yu.F., Zaguliaev D.V., Perikova E.A., Teresov A.D., Rubannikova Yu.A., Semin A.P. Structural Phase State of Surface Alloyed Y2O3 Silumin After Electron beam Processing. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques. 2019, vol. 13 (60), pp. 1343–1349.
167. Ivanov Yu.F., Gromov V.E., Zagulyaev D.V., Konovalov S.V., Rubannikova Yu.A., Petrikova E.A., Rygina M.E. Nanostructure formation of hypoeutectic silumin by electronion-plasma methods. Journal of Physics: Conference Series. 2019, vol. 1393, article 012091.
168. Ivanov Yu.F., Gromov V.E., Zaguliaev D.V., Konovalov S.V., Rubannikova Yu.A., Semin A.P. The Structure and Properties of a Hypoeutectic Silumin Subjected to Complex Electron-Ion-Plasma Processing. Progress in Physics of Metals. 2019, vol. 20 (4), pp. 634–671.
Review
For citations:
Gromov V., Shlyarova Yu. TO THE ANNIVERSARY OF THE SCIENTIFIC SCHOOL “STRENGTH AND PLASTICITY OF MATERIALS UNDER EXTERNAL ENERGY INFLUENCES”. Bulletin of the Siberian State Industrial University. 2022;(1):4-32. (In Russ.)