Preview

Bulletin of the Siberian State Industrial University

Advanced search

DEVELOPMENT OF THEORETICAL FOUNDATIONS FOR THE FORMATION OF MICRO- AND NANOSCALE HYDRODYNAMIC INSTABILITIES FOR THE CREATION OF BREAKTHROUGH TECHNOLOGY

Abstract

The paper analyses the theoretical foundations of micro- and nanoscale hydrodynamic instabilities formation. In traditional and modern technologies, there are processes developing at micro and nano distances that previously could not be paid attention to. Identification of new patterns and determination of the range of parameters under which they are implemented determines the scientific significance and fundamental nature of research. Specific physical situations where Kelvin-Helmholtz instabilities are realized or can manifest themselves are considered. The practical significance of the tasks is to create fundamentally new technologies based on the gained knowledge. The solved tasks are described.

About the Author

Vladimir D. Sarychev
Siberian State Industrial Universit
Russian Federation

Cand. Sci. (Eng.), Assist. Prof. of the Chair of of Natural Sciences named after Professor V.M. Finkel



References

1. Eggers J., Villermaux J. Physics of liquid jets. Report on Progress in Physics. 2008, vol. 71, ar-ticle 036601.

2. Taylor G.I. Generation of ripples by wind blow-ing over a viscous liquid. In: The Scientific Pa-pers of Sir Geoffrey Ingram Taylor. Bachelor G.K. ed., 1940, vol. III, pp. 244–254. Cambridge University Press, 1963.

3. Li X.И., Tankin R.S. On the temporal instability of a two-dimensional viscous liquid sheet. Journal of Fluid Mechanics. 1991, vol. 226, pp. 425–443.

4. Dasgupta D., Nath S., Bhanja D. A study on dual role of viscosity on the stability of a viscous pla-nar liquid sheet surrounded by inviscid gas streams of equal velocities, and prediction of re-sulting droplet distribution using maximum en-tropy formulation. Physics of Fluids. 2019, vol. 31 (7), article 074103.

5. Joseph D.D., Funada T., Wang J. Potential flows of viscous and viscoelastic fluids. Cambridge: Cambridge University Press, 2007, 497 p.

6. Padrino J.C., Joseph D.D., Kim H. Viscous ef-fects on Kelvin-Helmholtz instability in a chan-nel. J. Fluid Mech. 2011, vol. 680, pp. 398–416.

7. Awasthi M.K., Asthana R., Agrawal G.S. pres-sure corrections for the potential flow analysis of Kelvin-Helmholtz instability with heat and mass transfer. Int. J. Heat Mass Transf. 2012, vol. 55, no. 9-10, pp. 2345–2352.

8. Awasthi M.K. Kelvin-Helmholtz instability of viscoelastic liquid-viscous gas interface with heat and mass transfer‖. International Journal of Thermal Sciences. 2021, vol. 161, no. 2, article 106710.

9. Awasthi M.K., Agarwal S. Rayleigh-Taylor in-stability in a spherical configuration: A viscous potential flow approach. Chinese Journal of Physics. 2020, vol. 68, pp. 866–873.

10. Awasthi M.K., Agarwal S. Instability of a radially moving cylindrical surface: a viscous potential flow approach. Journal of Fluids Engineering. 2020, vol. 142, no. 9, article 09450.

11. Awasthi M.K. Rayleigh-Taylor instability of swirling annular layer with mass transfer. Journal of Fluids Engineering. 2019, vol. 141 (7), article 0701202.

12. Awasthi M.K., Sarychev V.D., Nevskii S.A., Kuznetsov M.A., Solodsky S.A. Kelvin-Helmholtz instability of swirling annular layer with heat and mass transfer. Journal of Advanced Research in Dynamical and Control Systems. 2019, vol. 11 (5), pp. 86–96.

13. Han Y. Kelvin-Helmholtz instability of a con-fined nano-liquid sheet with the effects of heat and mass transfer and Marangoni convection. At-omization and Sprays. 2022, vol. 32, no. 1, pp. 73–89.

14. Bilgili S., Ugarte O., Akkerman V. Interplay of Kelvin-Helmholtz instability with acoustics in a viscous potential flow. Phys. Fluids. 2020, vol. 32, article 084108.

15. Granovskij A.Ju., Sarychev V.D., Gromov V.E. Model of internal nanolayers formation under shear flows of materials. Zhurnal tehnicheskoj fiziki. 2013, vol. 83, no. 10, pp. 155–158.

16. Sarychev V.D., Granovskij A.Ju., Cheremush-kina E.V., Gromov V.E. Model of mixing of layers created during electro-explosive treatment. Fundamental'nye problemy sovremennogo mate-rialovedenija. 2013, vol. 10, no. 4, pp. 558–562.

17. Sarychev V.D., Nevskij S.A., Konovalov S.V., Granovskij A.Ju. Model of the formation of nanostructures in rail steel during long-term op-eration. Matematicheskoe modelirovanie v estestvennyh naukah. 2015, vol. 1, pp. 394–398.

18. Sarychev V., Nevskii S., Granovskii A., China-khov D. Simulation of Nanoparticles Formation by Mechanism of Kelvin-Helmholtz Instability. Int. J. Nanoparticles Nanotech. 2017, vol. 3, no. 012, pp. 2–10.

19. Sarychev V.D., Nevskij S.A., Kormyshev V.E., Jur'ev A.A., Gromov V.E. Model of formation of nanostructured layers during long-term op-eration of rails. Izvestija. Chernaja metallurgija. 2020, vol. 63, no. 9, pp. 699–706.

20. Sarychev V.D., Nevskii S. A., Kuznetsov М. А. et al. Kelvin-Helmholtz Instability of Cylindrical Geometry for Micro-Dimensional Range of Wavelengths. Jordan Journal of Physics. 2022, no. 3, pp. 33–47.

21. Kulikovskij A.G., Shikina I.S. On the effect of viscosity on the stability of tangential rupture in an incompressible fluid. Vestnik Moskovskogo universiteta. 1997, no. 6, pp. 29–32.

22. Razumenko L.S., Tkachenko V.I. Instability of the interface of viscous flows. Vestnik Har'kovskogo universiteta. 2005, no. 710, pp. 72–80.

23. Aliev I.N., Jurchenko S.O., Nazarova E.V. Fea-tures of the combined instability of the charged interface of moving media. Inzhenerno-fizicheskij zhurnal. 2007, vol. 80, no. 5, pp. 64–69.

24. Aliev I.N., Jurchenko S.O. On the issue of insta-bility of the interface between two media of finite thickness. Inzhenerno-fizicheskij zhurnal. 2007, vol. 80, no. 6, pp. 127–133.

25. Shirjaeva S.O., Grigor'ev A.I., Suhanov S.A. On the role of fluid viscosity in the realization of Kelvin-Helmholtz instability. Jelektronnaja obrabotka materialov. 2013, vol. 49, pp. 56–61.

26. Grigor'ev A.I., Shirjaeva S.O. On finding analytical expressions for decrements in the as-ymptotics of a low-viscosity fluid. Zhurnal tehnicheskoj fiziki. 2013, vol. 83, no. 10, pp. 18–25.

27. Senecal P.K., Schmidt D.P., Nouar I., Rutland C.J., Reitz R.D., Corradini M.L. Modeling high-speed viscous liquid sheet atomization. Interna-tional Journal of Multiphase Flow. 1999, vol. 25, pp. 1073–1097.

28. Sirignano W.A., Edwards C.F. Fluid dynamics and transport of droplets and sprays. Cambridge University Press, 2010, 462 p.

29. Valiev R.Z., Aleksandrov I.V. Nanostrukturiro-vannye materialy, poluchennye sil'noj plastich-eskoj deformaciej. Moscow: Logos, 2000, 272 p.

30. Glezer A.M., Kozlov E.V., Koneva N.A., Popova N.A., Kurzina I.A. Plastic deformation of nanostruc-tured materials. N.-Y.: Taylor & Francis Group, 2017, 323 p.

31. Kulagin R., Beygelzimer Y., Ivanisenko Y., Mazilkin A., Straumal B., Hahn H. Instabilities of interfaces between dissimilar metals induced by high pressure torsion. Materials Letters. 2018, vol. 222, no. 1, pp. 172–175.

32. Ivanisenko Yu., Fecht H.J. Microstructure modi-fication in the surface layers of railway rails and Wheels. Steel tech. 2008, vol. 3, no. 1, pp. 19–23.

33. Baumann G., Fecht H.J., Liebelt S. Formation of white-etching layers on rail treads. Wear. 1996, vol. 191, pp. 133–140.

34. Österle Rooch H., Pyzalla A., Wang L.W., OeS-terle W., Rooch H., Pyzalla A., Wang L., Österle W., Rooch H., Pyzalla A., et al. Investigation of white etching layers on rails by optical microsco-py, electronmicroscopy. X-ray and synchrotron X-ray diffraction. Mater. Sci. Eng. A. 2001, vol. 303, pp. 150–157.

35. Wild Wang L., Hasse B., Wroblewski T., Goe-rigk G., Pyzalla A.E. Microstructure alterations at the surface of a heavily corrugated rail with strong ripple formation. Wear. 2003, vol. 254, pp. 876–883.

36. Zhang H.W., Ohsaki S., Mitao S., Ohnuma M., Hono K. Microstructural investigation of white etching layer on pearlite steel rail. Mater. Sci. Eng. A. 2006, vol. 421, pp. 191–199.

37. Takahashi J., Kawakami K., Ueda M. Atom probe tomography analysis of the white etching layer in a rail track surface. Acta Mater. 2010, vol. 58, pp. 3602–3612.

38. Lojkowski W., Djahanbakhsh M., Bürkle G., Gierlotka S., Zielinski W., Fecht H.J. Nanostruc-ture formation on the surface of railway tracks. Mater. Sci. Eng. A. 2001, vol. 303, pp. 197–208.

39. Ishida M. Rolling contact fatigue (RCF) defects of rails in Japanese railways and its mitigation strategies. Electron. J. Struct. Eng. 2013, vol. 13, pp. 67–74.

40. Steenbergen M., Dollevoet R. On the mechanism of squat formation on train rails. Part I: Origina-tion. Int. J. Fatigue. 2013, vol. 47, pp. 361–372.

41. Pal S., Valente C., Daniel W., Farjoo M. Metallurgical and physical understanding of rail squat initiation and propagation. Wear. 2012, vol. 284-285, pp. 30–42.

42. Johnson K.L. Contact mechanics. Cambridge University Press, 1987, 510 p.

43. Rubcov V.E., Tarasov S.Ju., Kolubaev A.V. One-dimensional model of inhomogeneous shear under sliding friction. Fizicheskaja me-zomehanika. 2012, vol. 15, no. 4, pp. 103–103.

44. Tarasov S.Ju., Rubcov V.E., Kolubaev A.V., Gorbatenko V.V. Analysis of microscopic defor-mation fields during sliding friction. Izvestija vuzov. Fizika. 2013, vol. 56, no. 7-2, pp. 350–355.

45. Rubcov V.E., Tarasov S.Ju., Kolubaev A.V. In-homogeneity of deformation and shear instability of the material under friction. Izvestija vuzov. Fizika. 2011, no. 11-3, pp. 215–220.

46. Ivanov Y.F., Glezer A.M., Sundeev R.V., Kuz-netsov R.V., Gromov V.E., Shliarova Y.A., Semin A.P. Fine structure formation in rails un-der ultra long-term operation. Materials Letters. 2022, vol. 309, article 131378.

47. Straumal B.B., Kulagin R., Klinger L., Rabkin E., Straumal P.B., Kogtenkova O.A., Baretzky B. Structure refinement and fragmentation of precipitates under severe plastic deformation. A Review. Materials. 2022, vol. 15, article 601.

48. Sarychev V.D., Nevskii S.A., Kormyshev V.E., Yur’ev A.A., Gromov V.E. Model of nanostruc-tural layer formation during long-term operation of rails. Izvestiya. Ferrous Metallurgy. 2020, vol. 63, no. 9, pp. 699–706.

49. Barrero A., Loscertales I. Micro- and Nanoparti-cles via Capillary Flows. Annual Review of Fluid Mechanics. 2007, vol. 39, no. 1, pp. 89–106.

50. Anna S.L. Droplets and bubbles in microfluidic devices. Annu. Rev. Fluid Mech. 2016, vol. 48, pp. 285–309.

51. Gañán-Calvo A.M. Generation of steady liquid micro threads and micron-sized monodisperse sprays in gas streams. Phys. Rev. Lett. 1998, vol. 80, pp. 285–288.

52. Gordillo J.M., Pérez-Saborid M., Gañán-Calvo A.M. Linear stability of co-flowing liquid – gas jets. Journal of Fluid Mechanics. 2001, vol. 448, pp. 23–51.

53. Si T., Li F.A., Yin X.I.Y., Yin X.Z. Modes in flow focusing and instability of coaxial liquid-gas jets. J. Fluid Mech. 2009, vol. 629, pp. 1–23.

54. Mu K., Ding H., Si T. Experimental and numeri-cal investigations on interface coupling of coaxial liquid jets in co-flow focusing. Phys. Fluids. 2020, vol. 32, article 042103.

55. Mu K., Li G.B., Si T. Instability and interface coupling of coaxial liquid jets in a driving stream. Phys. Fluids. 2020, vol. 32, article 092107.

56. Mu K., Qiao R., Si T., X Cheng X., Ding H. In-terfacial instability and transition of jetting and dripping modes in a co-flow focusing process. Phys. Fluids. 2021, vol. 33, article 052118.

57. Mu K., Qiao R., Guo J., Yang C., Wu Y., Si T. Parametric study on stability and morphology of liquid cone in flow focusing. International Jour-nal of Multiphase Flow. 2021, vol. 135, article 103507.

58. López M., Cabezas M.G., Montanero J.M., Her-rada M.A. On the hydrodynamic focusing for producing microemulsions via tip streaming. J. Fluid Mech. 2022, vol. 934, A47.

59. Gau C., Shen C.H., Wang Z.B. Peculiar phenomenon of micro-free jet flow. Physics of Fluids. 2009, vol. 21, no. 9, article 092001.

60. Kozlov V.V., Grek G.R., Litvinenko Yu.A., Ko-zlov G.V., Litvinenko M.V. Subsonic round and palin macro and micro jets in a transverse acous-tic field. Vestnik NGU. Seriya: Fizika. 2010, vol. 5, no. 2, pp. 28–42.

61. Kozlov V.V, Grek G.R., Dovgal A.V., Litvinen-ko Y.A. Stability of Subsonic Jet Flows. Journal of Flow Control, Measurement & Visualization. 2013, vol. 1, pp. 94–101.

62. Kozlov V.V., Grek G.R., Litvinenko Yu.A. Visualization of conventional and combusting subsonic jet instabilities. Dordrecht: Springer International Publishing, 2016, 126 p.

63. Aniskin V.M., Bountin D.A., Maslov A.A., Mironov S.G., Tsyryulnikov I.S. Investigation of stability of a subsonic gas microjet. Zh. Tekh. Fiz. 2012, vol. 82 (2), pp. 17–23.

64. Aniskin V.M., Lemanov V.V., Maslov N.A., Mukhin K.A., Terekhov V.I., Sharov K.A. Ex-perimental study of subsonic flow plane mini- and microjets of air. Tech. Phys. Lett. 2015, vol. 41, pp. 26–31.

65. Aniskin V.M., Maslov A.A., Mukhin K.A. Structure of subsonic plane microjets. Microfluidics and Nanofluidics. 2019, vol. 23 (4), pp. 57.

66. Krivokorytov M.S., Golub V.V., Moralev I.A. Development of instability in gas microjets under an acoustic action. Pisma Zh. Tekh. Fiz. 2013, vol. 39 (18), pp. 38–44.

67. Lemanov V.V., Terekhov V.I., Sharov K.A., Shumeiko A.A. Experimental study of sub-merged jets at low Reynolds numbers. Pisma Zh. Tekh. Fiz. 2013, vol. 39 (9), pp. 34–40.

68. Chang C.J., Shen C.H., Gau C. Flow and heat transfer of a micro jet impinging on a heated chip. Part I. Micro free and impinging jet flow. Nanoscale and Microscale Thermophysical En-gineering. 2013, vol. 17 (1), pp. 50–68.

69. Xiaobing L., Wei C., Renxia S., Sheng L. Experimental and numerical investigation of a microjet-based cooling system for high power LEDs. Heat Transf. Eng. 2008, vol. 29 (9), pp. 774–781.

70. Hadrys D., Piwnikb J. Welding with microjet cooling as a method of improving, the plastic properties of welds. J. Eng. Phys. Thermophys. 2014, vol. 87 (5), pp. 1170–1176.

71. Rusowicza A., Leszczynski M.J., Grzebieleca A., Laskowski R. Experimental investigation of sin-gle-phase microjet cooling of microelectronics. Arch. Thermodyn. 2015, vol. 36 (3), pp. 139–147.

72. Carpenter J.-B., Baillot F., Blaisot J.-B., Du-mouchel C. Behavior of cylindrical liquid jets evolving in a transverse acoustic field. Physics of Fluids. 2009, vol. 21, no. 023601.

73. Shevchenko A.K., Yakovenko S.N. Numerical investigation of flow control methods and split-ting effects in a round submerged jet. Teplofizika i aeromekhanika. 2021, vol. 28, no. 3, pp. 379–395.


Review

For citations:


Sarychev V. DEVELOPMENT OF THEORETICAL FOUNDATIONS FOR THE FORMATION OF MICRO- AND NANOSCALE HYDRODYNAMIC INSTABILITIES FOR THE CREATION OF BREAKTHROUGH TECHNOLOGY. Bulletin of the Siberian State Industrial University. 2022;(2):29-38. (In Russ.)

Views: 9


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304 - 4497 (Print)
ISSN 2307-1710 (Online)