Preview

Bulletin of the Siberian State Industrial University

Advanced search

STRENGTHENING MECHANISMS OF A TI/TIB COMPOSITE PRODUCED BY SPARK PLASMA SINTERING AFTER HOT ROLLING

https://doi.org/10.57070/10.57070/2304-4497-2022-4(42)-80-85

Abstract

The Ti/TiB metal-matrix composite was obtained by spark plasma sintering at a temperature of 1000 °C. In the initial state, the Ti/TiB MMC microstructure consisted of TiB needle fibers unevenly distributed in the titanium matrix. SEM showed that the apparent diameter of the TiB fibers varied over a wide range: from tens to several hundreds of nanometers. The average TiB fiber diameter in the initial state is 163 ± 35 nm. Hot rolling caused the fragmented TiB fiber particles to align in the rolling direction. The apparent average length of the TiB fibers decreased from 8 ± 4 to 3.0 ± 1.2 μm, probably as a result of fiber breakage during deformation. It has been established that after hot rolling the composite has an increased yield strength and significantly improved ductility compared to the initial state: the hot-rolled sample failed at a compressive strain of 25 %, while the ductility for the initial state was 12 %. The yield strength was 930 and 1200 MPa for the initial and hot-rolled states. The predicted theoretical strength, calculated by summing the contribution of all hardening mechanisms, is 1946 MPa, which is higher than the experimental value of 1200 MPa. Dispersion strengthening by fragments of TiB fibers makes the most significant contribution to the overall strength of the composite (934 MPa or 50 %).

About the Authors

Maxim Ozerov
Belgorod National Research University
Russian Federation

Cand. Sci. (Eng.), Researcher



Vitaly Sokolovsky
Belgorod National Research University
Russian Federation

Cand. Sci. (Eng.), Researcher



Elizaveta Povolyaeva
Belgorod National Research University
Russian Federation

Junior Researche



Elena Nozdracheva
Belgorod National Research University
Russian Federation

Junior Researcher



Sergey Zherebtsov
Belgorod National Research University
Russian Federation

Dr. Sci. (Eng.), Assist Professor, Leading Researcher



References

1. Leyens C., Peters M. Titanium and titanium alloys. Fundamentals and applications. Wiley-VCH: Weinheim, 2003, 499 p.

2. Godfrey T.M.T., Goodwin P.S., Ward-Close C.M. Titanium particulate metal matrix composites – Reinforcement, production methods, and mechanical properties. Adv. Eng. Mater. 2000, vol. 2, pp. 85–91.

3. Lindroos V.K., Talvitie M.J.J. Recent ad-vances in metal matrix composites. Mater. Process. Technol. 1995, vol. 53, pp. 273–284.

4. Radhakrishna Bhat B.V., Subramanyam J., Bhanu Prasad V.V. Preparation of Ti-TiB-TiC & Ti-TiB composites by in-situ reaction hot pressing. Mater. Sci. Eng. A. 2002, vol. 325, pp. 126–130.

5. Ozerov M., Klimova M., Vyazmin A., Stepanov N., Zherebtsov S. Orientation relationship in a Ti/TiB metal-matrix composite. Mater. Lett. 2017, vol. 186, pp. 168–170.

6. Morsi K., Patel V.V. Processing and properties of titanium–titanium boride (TiBw) matrix composites – a review. J. Mater. Sci. 2007, vol. 42, pp. 2037–2047.

7. Ragulya A.V. Fundamentals of spark plasma sintering, in encyclopedia of materials. Science and Technology. K.H. Jürgen Buschow et al. eds. 2010, 5 p.

8. Feng H., Zhou Yu, Jia D., Meng Q., Rao J. Growth mechanism of in situ TiB whiskers in spark plasma sintered TiB/Ti metal matrix composites. Cryst. Growth Des. 2006, vol. 7, pp. 1626–1630.

9. Huang L., Cui X., Geng L., Fu Y. Effects of rolling deformation on microstructure and mechanical properties of network structured TiBw/Ti composites. Trans. Nonferrous Met. Soc. China. 2012, vol. 22, pp. 79–83.

10. Gaisin R.A., Imayev V.M., Imayev R.M. Effect of hot forging on microstructure and mechanical properties of near α titanium alloy/TiB composites produced by casting. J. Alloys Compd. 2017, vol. 723, p. 385–394. http://doi.org/10.1016/j.jallcom.2017.06.287

11. Zherebtsov S., Ozerov M., Stepanov N., Klimova M. Structure and properties of Ti/TiB metal–matrix composite after iso-thermal multiaxial forging. Acta Phys. Pol. A. 2018, vol. 134, pp. 695–698. http://doi.org/10.12693/APhysPolA.134.695

12. Ozerov M., Klimova M., Sokolovsky V., Stepanov N., Popov A., Boldin M., Zherebtsov S. Evolution of microstructure and mechanical properties of Ti/TiB metal matrix composite during isothermal multiaxial forging. J. Alloys Compd. 2019, vol. 770, pp. 840–848. http://doi.org/10.1016/j. jallcom.2018.08.215

13. Huang L., Cui X., Geng L., Fu Y. Effects of rolling deformation on microstructure and mechanical properties of network structured TiBw/Ti composites. Trans. Nonferrous Met. Soc. China. 2012, vol. 22, pp. 79–83. http://doi.org/10.1016/S1003-6326(12)61687-2

14. Chen B., Shen J., Ye X., Jia L., Li S., Umeda J., Takahashi M., Kondoh K. Length effect of carbon nanotubes on the strengthening mechanisms in metal matrix composites. Acta Mater. 2017, vol. 140, pp. 317–325.

15. Koo M.Y., Park J.S., Park M.K., Kim K.T., Hong S.H. Effect of aspect ratios of in situ formed TiB whiskers on the mechanical properties of TiBw/Ti-6Al-4V composites. Scr. Mater. 2012, vol. 66, pp. 487–490.

16. Munir K.S., Zheng Y., Zhang D., Lin J., Li Y., Wen C. Improving the strengthening efficiency of carbon nanotubes in titanium metal matrix composites. Mater. Sci. Eng. A. 2017, vol. 696, pp. 10–25.

17. Conrad H. Effect of interstitial solutes on the strength and ductility of titanium. Prog. Mater. Sci. 1981, vol. 26, pp. 123–403.

18. Frost. H.J., Ashby M.F. Deformation-Mechanism Maps. Pergamon Press: Oxford, UK, 1982, pp. 1–166.

19. Godfrey T.M.T., Goodwin P.S., Ward-Close C.M. Titanium particulate metal matrix composites – Reinforcement, production methods, and mechanical properties. Adv. Eng. Mater. 2000, part 2, pp. 85–91.

20. Estrin Y., Toth L.S., Molinari A., Brechet Y. A dislocation-based model for all hardening stages in large strain deformation. Acta Mater. 1998, vol. 46, pp. 5509–5522.

21. Ardell A.J. Precipitation hardening. Metall. Mater. Trans. A. 1985, vol. 16 (12), pp. 2131–2165.

22. Gladman T. Precipitation hardening in metals. Mater. Sci. Technol. 1999, vol. 15, pp. 30–36.

23. Zherebtsov S., Ozerov M., Stepanov N., Klimova M., Ivanisenko Y. Effect of high-pressure torsion on structure and microhardness of Ti/TiB metal matrix composite. Metals. 2017, vol. 7, pp. 507.


Review

For citations:


Ozerov M., Sokolovsky V., Povolyaeva E., Nozdracheva E., Zherebtsov S. STRENGTHENING MECHANISMS OF A TI/TIB COMPOSITE PRODUCED BY SPARK PLASMA SINTERING AFTER HOT ROLLING. Bulletin of the Siberian State Industrial University. 2022;(4):80-85. (In Russ.) https://doi.org/10.57070/10.57070/2304-4497-2022-4(42)-80-85

Views: 13


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304 - 4497 (Print)
ISSN 2307-1710 (Online)