Preview

Bulletin of the Siberian State Industrial University

Advanced search

STUDY OF THE INFLUENCE OF SILICON ON THE STABILITY OF THE TiC PHASE IN THE PRODUCTION OF COMPOSITE MATERIAL AK10M2N ‒ 10 % TiC BY THE SHS METHOD

https://doi.org/10.57070/2304-4497-2025-1(51)-25-34

Abstract

Aluminum matrix composite materials (AMCM) combine a set of properties of a matrix alloy and a reinforcing filler, which attracts great interest from researchers. For their manufacture, it is most advisable to use liquid-phase methods, a special place among which is occupied by the method of self-propagating high-temperature synthesis (SHS), which allows to produce ultrafine reinforcing phases directly in the melt from the initial micron-sized elemental powders and exclude the purchase of expensive highly dispersed powders, as well as reduce energy consumption and time to obtain the finished product. Using this method, it is possible to synthesize the ceramic phase of TiC with particle sizes from 100 nm, not only in the melt of technical aluminum, but also in the presence of alloying elements. This technology opens up great opportunities for improving the complex properties of existing industrial aluminum alloys and is especially attractive for alloys of the Al-Si system, which are widely in demand, but do not differ in high mechanical characteristics. The presented paper presents the results of a study on the effect of silicon in the matrix alloy AK10M2H on the stability of the TiC phase formed in its melt by the SHS method. 

About the Authors

Yulia V. Sherina
Samara State Technical University 
Russian Federation

postgraduate student of the Department of Metallurgy, Powder Metallurgy, Nanomaterials



Alfiya R. Luts
Samara State Technical University 

Cand. Sci. (Eng.), Associate Professorof the Department of Metallurgy, Powder Metallurgy, Nanomaterials



Dmitriy V. Zakamov
Samara State Technical University

Cand. Sci. (Eng.), Associate Professorof the Department of Metallurgy, Powder Metallurgy, Nanomaterials



References

1. 1. Belov N.A. Phase composition of aluminum al-loys. Moscow: MISIS, 2009:234. (In Russ.).

2. Rafal'skii I.V. Resource-saving synthesis of alu-minum-based alloys using dispersed non-metallic materials and intelligent methods for controlling metallurgical processes for their production. Minsk: BNT, 2016:209. (In Russ.).

3. Kurbatkina E.I., Kosolapov D.V., Khodykin L.D., Nigmetov M.S. Study of the influence of silicon additive on the phase composition of alu-minum composite materials reinforced with silicon carbide particles. Trudy VIAM. 2014;6:35–38. (In Russ.).

4. http://doi.org/10.1186/s40712-014-0012-9

5. Mikheev R.S., Chernyshova T.A. Discretely reinforced composite materials of the Al ‒ TiC system (review). Zagotovitel'nye proizvodstva v mashinostroenii. 2008;11:44–53. (In Russ.).

6. Kulik V.I., Nilov A.S. Composite materials with a metal matrix: a manual. Saint-Petersburg: Balt. gos. tekhn. un-t, 2020:69. (In Russ.).

7. Luts A.R., Amosov A.P., Latukhin E.I., Rybakov A.D., Shigin S.V. Production of alloyed composite material Al ‒ Cu ‒ Mn ‒ TiС with improved tribotechnical properties. Zagotovitel'nye proizvodstva v mashinostroenii. 2020;18(6):278–282. (In Russ.). http://doi.org/10.36652/1684-1107-2020-18-6-278-282.

8. Amosov A.P., Luts A.R., Latukhin E.I., Ermoshkin A.A. Application of SHS processes for in situ fabrication of aluminomatrix composites discretely reinforced with nanosized titanium carbide particles: a review. Izvestiya vuzov. Tsvetnaya metallurgiya, 2016;1:39–49. (In Russ.). http://doi.org/10.17073/0021-3438-2016-1-39-49

9. Kurganova Yu.A. Development and application of dispersion-hardened aluminum matrix compo-site materials in mechanical engineering. Avtoref. dis. dok. tekhn. nauk. Moscow;2008:20. (In Russ.).

10. Chernyshova T.A., Kalashnikov I.E., Bolotova L.K. Tribological characteristics of cast aluminum matrix composite materials modified with nanoscale refractory powders. Rossiiskie nanotekhnologii. 2011;6(1-2):135–142. (In Russ.).

11. http://doi.org/10.1134/S1995078011010095.

12. Kalashnikov I.E. Development of methods for reinforcing and modifying the structure of alumi-num matrix composite materials. Avtoref. dis. dok. tekhn. nauk. Moscow;2011:428. (In Russ.).

13. Joseph O.O., Afolalu A.S., Abioyeetal А.А. Ef-fect of TiC addition on the mechanical properties and microstructure of Al-Si alloy. Materials To-day: Proceedings, 2020.

14. https://doi.org/10.1016/j.matpr.2020.04.544.

15. Karantzalis A.E., Lekatou А., Georgatis Е., Poulas V., Mavros H. Microstructural Observations in a Cast Al-Si-Cu/TiC Composite. Journal of Materials Engineering and Performance. 2010;19 (4):585–590.

16. https://doi.org/10.1007/s11665-009-9505-8.

17. Zhang M, Huo Y., Ma L., Huang B., Hu Q. In SituTiC Ceramic Particles Locally Reinforced Al-Si Matrix Composites Prepared by SHS-Casting Method from the Al-Si-Ti-C System. In-ternational Journal of Applied Ceramic Technol-ogy. 2013;11(4):723–731.

18. https://doi.org/10.1111/ijac.12097.

19. Guo R.-F., Wang Y., Ma Y.-H., Shen P. Role of Si in the wetting of TiC by Al. Journal of Mate-rials Science. 2020;2.

20. https://doi.org/10.1007/s10853-020-05496-4.

21. López V.H., Scoles A., Kennedy A.R. The ther-mal stability of TiC particles in an Al 7 wt. % Si alloy. Materials Science and Engineering: A. 2002;356(1–2):316–325. https://doi.org/10.1016/s0921-5093(03)00143-6.

22. Xia F., Liang M. X., Gao X. S., Guo Y. C., Li J. P., Yang W., Zhang Z. K. Instability of in situ TiC particles in an Al-12Si. Journal of Materials Research and Technology. 2020;9(5):11361–11369.

23. https://doi.org/10.1016/j.jmrt.2020.07.063.

24. Ding H., Liu X. Influence of Si on stability of TiC in Al melts. Transactions of Nonferrous Metals Society of China. 2011;21(7):1465–1472. https://doi.org/10.1016/s1003-6326(11)60882-0.

25. Luts A.R., Sherina Yu.V., Amosov A.P., Minakov E.A., Ibatullin I.D. Selection of heat treatment and study of its influence on the structure and properties of composite material AK10M2N-10%TiC obtained by the SHS method in the melt. Izvestiya vuzov. Tsvetnaya metallurgiya. 2024;30(2):30–43. (In Russ.).

26. https://doi.org/10.17073/0021-3438-2024-2-30-43

27. Sherina Yu.V., Luts A.R., Ibatullin I.D. Devel-opment of a composite material based on the AK10M2N alloy and study of its tribotechnical properties. Naukoemkie tekhnologii v mashi-nostroenii. 2022;2(128):11–16. (In Russ.). https://doi.org/10.30987/2223-4608-2022-2-11-16

28. Rybakov A.D. Application of various forms of carbon for SHS of highly dispersed titanium car-bide in the melt in the production of aluminum matrix composite materials. Avtoref. dis. kand. tekhn. nauk. Samara, 2021:18. (In Russ.).

29. Amosov A.P., Latukhin E.I., Umerov E.R. Ap-plication of infiltration and self-propagating high-temperature synthesis processes to produce cermets: review. Izvestiya vuzov. Tsvetnaya metallurgiya. 2021;27(6):52–75.

30. https://doi.org/10.17073/0021-3438-2021-6-52-75

31. Sherina Yu.V. Effect of reinforcement with highly dispersed phase of titanium carbide synthesized in the melt and heat treatment on the structure and properties of industrial aluminum alloys. Avtoref. dis. kand. tekhn. nauk. Samara, 2024:20. (In Russ.).

32. Sherina Yu.V., Luts A.R. The influence of heat treatment on the properties of composite materials AMg2 ‒ 10 % TiC and AMg6 ‒ 10 % TiC obtained by the method of self-propagating high-temperature synthesis. FrontierMaterials&Technologies. 2024;1:105–112.

33. https://doi.org/ 10.18323/2782-4039-2024-1-67-10

34. Sherina Yu.V. Study of the influence of the addition of highly dispersed phase of titanium carbide synthesized in the melt and heat treatment on the structure and properties of the alloy AM4, 5Kd. Transportnoe mashinostroenie. 2024;3:59–59. https://doi.org/10.30987/2782-5957-2024-3-59-69

35. Vishnuvardhan Reddy D., Salonica Sravani P., Deepthi N. The investigation of mechanical and metallurgical properties on Al7075-TiC-SiC reinforced hybrid composites by stir casting. International Journal of Mechanical and Production, 2019;9:769–776. https://doi.org/10.24247/ijmperdapr201976

36. Kachenyuk M.N., Smetkin A.A., Andrakovskaya K.E. The influence of mechanical activation and con-solidation conditions on the formation of Ti3SiC2/TiC composite material. Sovremennye problemy nauki i obrazovaniya, 2014;2.


Review

For citations:


Sherina Yu., Luts A., Zakamov D. STUDY OF THE INFLUENCE OF SILICON ON THE STABILITY OF THE TiC PHASE IN THE PRODUCTION OF COMPOSITE MATERIAL AK10M2N ‒ 10 % TiC BY THE SHS METHOD. Bulletin of the Siberian State Industrial University. 2025;(1):25-34. https://doi.org/10.57070/2304-4497-2025-1(51)-25-34

Views: 96


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304 - 4497 (Print)
ISSN 2307-1710 (Online)