Preview

Bulletin of the Siberian State Industrial University

Advanced search

DEVELOPMENT VECTOR FOR ENHANCEMENT OF CANTOR HEA PROPERTIES

https://doi.org/10.57070/2304-4497-2023-2(42)-3-12

Abstract

First created over 20 years, high-entropy five-component alloy CoCrFeNiMn (Cantor alloy) still attracts the attention of researchers in the field of physical materials science because its possible application in various industries due to a successful combination of strength and plastic properties. To date, a large amount of experimental material has been accumulated on how to control the properties of this alloy. This article reviews the publications of Russian and foreign authors in two areas of improving the properties of this alloy: alloying, precipitation and heat treatment and the use of Calphad phase diagrams. In the first direction, the role of alloying with B, Vi, Al, V, Si, Nb is analyzed; nanoprecipitations, various modes of thermal and deformation processing. It is concluded that it is necessary to conduct experiments alloying HEA with Zr and Nb, which have proven themselves well in steels hardening. The creation and modification of the properties of five-component HEA is possible using the Calphad computer software developed for calculating state diagrams. The results of publications on the thermodynamic description of five-component alloys analyzed in the article are confirmed by comparing the phase diagrams with the available experimental data. It is shown that the development of a new generation of HEAs is possible based on the calculation of the Calphad phase diagrams.

About the Authors

Viktor Gromov
Siberian State Industrial University
Russian Federation

 Dr. Sci. (Phys.-Math.), Prof., Head of the Chair of Science named after V.M. Finkel'



Sergey Konovalov
Siberian State Industrial University
Russian Federation

Dr. Sci. (Tech.), Professor, Vice-Rector for Research and Innovation



Xizhang Chen
Wenzhou, China
China

PhD, Professor 



Mihail Efimov
Siberian State Industrial University
Russian Federation

Postgraduate of the Chair of Science named after V.M. Finkel’



Irina Panchenko
Siberian State Industrial University
Russian Federation

Cand. Sci. (Eng.), Head of the Laboratory of Electron Microscopy and Image Processing



Vitaly Shlyarov
Siberian State Industrial University
Russian Federation

Postgraduate of the Chair of Science named after V.M. Finkel’, Researcher of Laboratory of Electron Microscopy and Image Pro-cessing



References

1. Gromov V.Е., Konovalov S.V., Ivanov Yu.F., Osintsev K.A. Structure and properties of high-entropy alloys. Springer. Advanced structured materials. 2021, 110 p.

2. Gromov V.E., Ivanov Yu.F., Osintsev K.A., Shlyarova Yu.A., Panchenko I.A. Structure and properties of high-entropy alloys. Moscow: Science, 2021. 203 p.

3. Yeh J.W. Recent progress in high-entropy alloys. Annales de Chimie – Science des Matériaux. 2006, vol. 31(6), pp. 633–648. http://doi.org/10.3166/acsm.31.633-648

4. Zhang Y., Zuo T.T., Tang Z., Gao M.C., Dahmen K.A., Liaw P.K., Lu Z.P. Microstructures and properties of high-entropy alloys. Progress in Materials Science. 2014, vol. 61, pp. 1–93. https://doi.org/10.1016/j.pmatsci.2013.10.001

5. Cantor B., Chang I.T.H., Knight P., Vincent A.J.B. Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering A. 2004, vol. 375-377, pp. 213–218. https://doi.org/10.1016/ j.msea.2003.10.257

6. George E.P., Curtin W.A., Tasan C.C. High entropy alloys: a focused review of mechanical properties and deformation mechanisms. Acta Materialia. 2020, vol. 188, pp. 435–474. https://doi.org/10.1016/j.actamat.2019.12.015

7. Li Z., Zhao S., Ritchie R.O., Meyers M.A. Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys. Progress in Materials Science. 2019, vol. 102, pp. 296–345. https://doi.org/10.1016/j.pmatsci. 2018.12.003

8. Cantor B., Chang I.T.H., Knight P., Vincent A.J.B. Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering: A. 2004, vol. 375-377, pp. 213–218. https://doi.org/10.1016/ j.msea.2003.10.257

9. Otto F., Dlouhy A., Somsen C., Bei H., Eggeler G., George E.P. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Materialia. 2013, vol. 61 (15), pp. 5743–5755. https://doi.org/10.1016/j. ac-tamat.2013.06.018

10. Schuh B., Mendez-Martin F., Volker B., George E.P., Clemens H., Pippan R., Hohen-warter A. Mechanical properties, microstruc-ture and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation. Acta Materialia. 2015, vol. 96, pp. 258–268. https://doi.org/10.1016/j. actamat.2015.06.025

11. Osintsev K.A., Gromov V.E., Konovalov S.V., Ivanov Yu.F., Panchenko I.A. High-entropy alloys: structure, mechanical properties, deformation mechanisms and application. Izvestiya vuzov. Ferrous metallurgy. 2021, vol. 64, no.4, pp. 249–258. (In Russ.). https://doi.org/ 10.17073/0368-0797-2021-4-249-258

12. Gromov V.E., Rubannikova Yu.A., Konovalov S.V., Osintsev K.A., Vorobyov S.V. Formation of improved mechanical properties of the high-entropy Cantor alloy. Izvestiya vuzov. Ferrous metallurgy. 2021, vol. 64, no. 8, pp 599–605. (In Russ.). https://doi.org/10.17073/0368-0797-2021-8-599-605

13. Ikeda Y., Tanaka I., Neugebauer J., Kormann F. Im-pact of interstitial C on phase stability and stacking-fault energy of the CrMnFeCoNi high-entropy alloy. Physical Review Materials. 2019, vol. 3, article 113603. https://doi.org/10.1103/PhysRev Materi-als.3.113603

14. Listyawan T.A., Lee H., Park N., Lee U. Mi-crostructure and mechanical properties of CoCrFeMnNi high entropy alloy with ultrasonic nanocrystal surface modification process. Journal of Materials Science and Technology. 2020, vol. 57, pp. 123–130. https://doi.org/10. 1016/j.jmst.2020.02.083

15. Guo L., Wu W., Ni S., Yuan Z., Cao Y., Wang Z., Song M. Strengthening the FeCoCrNiMo0,15 HEA by gradient structure. Journal of Alloys and Compounds. 2020, vol. 841, article 155688. https://doi.org/10.1016/j.jallcom. 2020.155688

16. Rogachev A.S. Structure, stability and properties of high entropy alloys. Fizika metallov i metallovedenie. 2020, vol. 121, no. 8, pp. 807–841. (In Russ.). https://doi.org/10.31857/ S0015323020080094

17. Raturi A., Aditya C.J., Gurao N.P., Biswak K. ICME approach to explore equiatomic and non-equiatomic single phase BCC refractory high entropy alloys. Journal of Alloys and Compounds. 2019, vol. 806, pp. 587–595. https://doi.org/10.1016/j.jallcom.2019.06.387

18. Senkov O.N., Zhang C., Pilchak A.L., Payton E.J., Woodward C., Zhang F. CALPHAD-aided development of quaternary multi-principal element refractory alloys based on NbTiZr. Journal of Alloys and Compounds. 2019, vol. 783, pp. 729–742. https://doi.org/ 10.1016/j.jallcom.2018.12.325

19. Menou E., Tancret F., Toda-Caraballo I., Ramstein G., Castany P., Bertrand E., Gautier N., Rivera Díaz-Del- Castillo P.E.J. Computational design of light and strong high entropy alloys (HEA): obtainment of an extremely high specific solid solution hardening. Scripta Materialia. 2018, vol. 156, pp. 120–123. https://doi.org/10.1016/j.scriptamat. 2018.07.024

20. Tapia A.J.S.E, Yim D., Kim H.S., Lee B.-J. An approach for screening single phase high-entropy alloys using an in-house thermodynamic database. Intermetallics. 2018, vol. 101, pp. 56–63. https://doi.org/10.1016/j.intermet. 2018.07.009

21. Alaneme K.K., Bodunrin M.O., Oke S.R. Processing, alloy composition and phase transition effect on the mechanical and corrosion properties of high entropy alloys: a review. Journal of Materials Research and Technology. 2016, vol. 5(4), pp. 384–393. https://doi.org/10.1016/j. jmrt.2016.03.004

22. High-entropy alloys. Second edition / B.S. Murty, J.W. Yeh, Ranganathan S., P.P. Bhattacharjee. Amsterdam: Elsevier, 2019, 374 p.

23. Zhang Y. High-entropy materials. A brief introduction. Singapore: Springer Nature, 2019, 159 pp. https://doi.org/10.1007/978-981-13-8526-1

24. Yamanaka S., Ikeda Ki., Miura S. The effect of titanium and silicon addition on phase equilibrium and mechanical properties of CoCrFeMnNi-based high entropy alloy. Journal of Materials Research. 2021, vol. 36, pp. 2056–2070. https://doi.org/10.1557/ s43578-021-00251-0

25. Algan Şimşek İ.B., Arık M.N., Talaş Ş., Kurt A. The effect of B addition on the microstructural and mechanical properties of FeNiCoCrCu high entropy alloys. Metallurgical and Materials Transactions A. 2021, vol. 52, pp. 1749–1758. https://doi.org/10.1007/ s11661-021-06186-9

26. Shim S.H., Pouraliakbar H., Lee B.J., Kim Y.K., Rizi M.S., Hong S.I. Strengthening and deformation behavior of as-cast CoCrCu1.5MnNi high entropy alloy with micro-/nanoscale precipitation. Materials science and Engineering A. 2022, vol. 853, article 143729. https://doi.org/10.1016/j. msea. 2022.143729

27. He Z., Guo Y., Sun L., Yan H.-L., Guan X., Jiang S., Shen Y., Yin W., Zhao X., Li Z., Jia N. Interstitial-driven local chemical order enables ultrastrong face-centered cubic multicomponent alloys. Acta Materialia. 2023, vol. 243, article 118495. https://doi.org/10.1016 /j.actamat.2022.118495

28. Knieps M.S., Messe O.M.D.M., Barriobero-Vila P., Hecht U. Advanced characterization of two novel Fe-rich high entropy alloys developed for laser powder bed fusion in the Al-Co-Cr-Fe-Ni-Zr system. Materialia. 2022, vol. 26, article 101615. https://doi.org/10. 1016/j.mtla.2022.101615

29. Abbasi E., Dehghani K. Phase prediction and microstructure of centrifugally cast non-equiatomic Co-Cr-Fe-Mn-Ni(Nb,C) high en-tropy alloys. Journal of Alloys and Com-pounds. 2019, vol. 783, pp. 292–299. https://doi.org/10.1016/j.jallcom.2018.12.329

30. Conway P.L.J., Klaver T.P.C., Steggo J., Ghassemali E. High entropy alloys towards industrial applications: high-throughput screening and experimental investigation. Materials Science and Engineering: A. 2022, vol. 830, article 142297. https://doi.org/10.1016/j. msea.2021.142297

31. Abrahams K., Zomorodpoosh S., Khorasgani A., Roslyakova I., Steinbach I., Kundin J. Automated assessment of a kinetic database for FCC Co–Cr–Fe–Mn–Ni high entropy alloys. Modelling and Simulation in Materials Science and Engineering. 2021, vol. 29, no. 5, article 055007. https://doi.org/10.1088/1361-651X/abf62b

32. Shafiei A. Simple approach to model the strength of solid-solution high entropy alloys in Co-Cr-Fe-Mn-Ni system. Strength of materials. 2022, vol. 54, pp. 705–716. https://doi.org/10.1007/s11223-022-00448-6

33. Do H-S., Choi W., Byeong-Joo L. A thermo-dynamic description for the Co–Cr–Fe–Mn–Ni system. Journal of Materials Science. 2022, vol. 57, pp. 1373–1389. https://doi.org/10. 1007/s10853-021-06604-8

34. Gao N., Lu D.H., Zhao Y.Y., Liu X.W., Liu G.H., Wu Y., Liu G., Fan Z.T., Lu Z.P., George E.P. Strengthening of a CrMnFeCoNi high-entropy alloy by carbide precipitation. Journal of Alloys and Compounds. 2019, vol. 792, pp. 1028–1035. https://doi.org/10. 1016/j.jallcom.2019.04.121

35. Jo Y.H., Jung S., Choi W.-M., Sohn S.S., Kim H.S., Lee B.-J., Kim N.J., Lee S. Cryogenic strength improvement by utilizing room-temperature deformation twinning in a partially recrystallized VCrMnFeCoNi high-entropy alloy. Nature Communications. 2017, vol. 8, article 15719. https://doi.org/10. 1038/ncomms15719

36. Lu Y., Dong Y., Guo S., Jiang L., Kang H., Wang T., Wen B., Wang Z., Jie J., Cao Z., Ruan H., Li T. A promising new class of high-temperature alloys: eutectic high-entropy alloys. Scientific Reports. 2014, vol. 4, article 6200. https://doi.org/10.1038/srep06200

37. Otto F., Dlouhý A., Pradeep K.G., Kuběnová M., Raabe D., Eggeler G., George E.P. Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures. Acta Materialia. 2016, vol. 112, pp. 40–52. https://doi.org/ 10.1016/j.actamat.2016.04.005

38. Stepanov N.D., Shaysultanov D.G., Ozerov M.S., Zherebtsov S.V., Salishchev G.A. Se-cond phase formation in the CoCrFeNiMn high entropy alloy after recrystallization annealing. Materials Letters. 2016, vol. 185, pp. 1–4. https://doi.org/10.1016/j.matlet.2016.08.088

39. Shafiei A. Design of eutectic high entropy alloys. Metallurgical and Materials Transactions A. 2022, vol. 53, pp. 4329–4361. https://doi.org/10.1007/s11661-022-06831-x

40. Wani I.S., Bhattacharjee T., Sheikh S., Bhattacharjee P.P., Guo S., Tsuji N. Tailoring nanostructures and mechanical properties of AlCoCrFeNi2.1 eutectic high entropy alloy using thermo-mechanical processing. Materials Science and Engineering: A. 2016, vol. 675, pp. 99–109. https://doi.org/10.1016/j. msea.2016.08.048

41. Zhang P.C., Zhai B., Wang H.P. Effect of microstructure, strain rate, and elevated temperature on the compression property of Fe–Co–Ni–Cr–Zr alloy. Metallurgical and Materials Transactions A. 2023, vol. 54, pp. 346–357. https://doi.org/10.1007/s11661-022-06887-9

42. Wu M., Wang S., Huang H., Shu D., Sun B. CALPHAD aided eutectic high-entropy alloy design. Materials Letters. 2020, vol. 262, article 127175. https://doi.org/10.1016/j. matlet.2019.127175


Review

For citations:


Gromov V., Konovalov S., Chen X., Efimov M., Panchenko I., Shlyarov V. DEVELOPMENT VECTOR FOR ENHANCEMENT OF CANTOR HEA PROPERTIES. Bulletin of the Siberian State Industrial University. 2023;(2):3-12. (In Russ.) https://doi.org/10.57070/2304-4497-2023-2(42)-3-12

Views: 39


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304 - 4497 (Print)
ISSN 2307-1710 (Online)