УДК 622.831

А.М. Никитина

Сибирский государственный индустриальный университет

МЕТОДИКА ОЦЕНКИ ПРОЦЕССОВ ДЕФОРМИРОВАНИЯ НЕОДНОРОДНОГО УГЛЕПОРОДНОГО МАССИВА ПРИ ОТРАБОТКЕ УГОЛЬНЫХ МЕСТОРОЖДЕНИЙ

Переход на большие глубины при разработке полезных ископаемых требует дополнительных исследований по изучению деформационных и прочностных свойств углепородного массива в постоянно усложняющихся геомеханических условиях.

Под влиянием высоких напряжений возрастает степень нарушенности массива горных пород. Это, в свою очередь, усложняет условия поддержания выработок и отработки полезного ископаемого.

В настоящее время для изучения процессов, протекающих в реальном углепородном массиве, широко применяется численный метод конечных элементов (МКЭ) [1]. Но этот метод имеет некоторые недостатки при решении трехмерной задачи: алгоритм метода позволявычислить параметры напряженнодеформированного состояния (НДС) углепородного массива с достаточной достоверностью лишь на линейном или допредельном участках диаграммы напряжения и деформации, а на участках запредельного деформирования указанные параметры отличаются на порядок [2].

В связи с этим для получения результатов вычислений методом конечных элементов, адекватных реальным геомеханическим про-

цессам, при постановке исследований процессов деформирования неоднородного углепородного массива предлагается использовать метод трехмерной дискретизации геомеханической модели неоднородного массива горных пород с последовательным выделением вложенных областей и подобластей для получения размеров конечных элементов, кратных размерам объектов систем разработки. Увеличение рассматриваемой области повысит точность решения. Указанный метод изложен в работах А.Б. Фадеева, Л.Д. Павловой [1, 3].

В настоящей работе предлагается следующий алгоритм решения трехмерной задачи. На первом этапе решается трехмерная задача с большим шагом дискретизации. С помощью диагональных плоскостей выделяются область и подобласть исследования (см. поз. а рисунка). Область и подобласть исследования разбиваются на крупные элементы, и производится расчет параметров НДС с использованием стандартных процедур МКЭ. На втором этапе проводится решение уже только для диагональной подобласти, которая разбивается на более мелкие элементы, а узловые перемещения по контуру подобласти, полученные в первом решении, вводятся как заданные граничные условия для повторного решения (см. поз. б рисунка). На

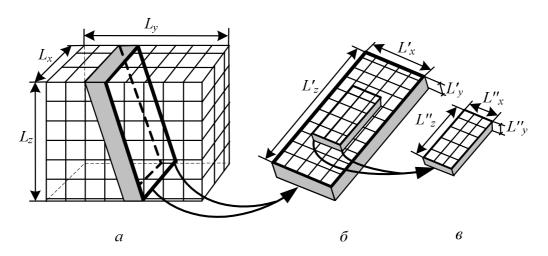


Схема выделения вложенных областей и подобластей: $a, \, 6, \, 8$ – первый, второй, третий этапы выделения

третьем этапе возможно сужение ширины неплоского сечения и уменьшение шага дискретизации на участке модели, где требуется более точное изучение (см. поз. в рисунка), т.е. описанная процедура фрагментации должна повторяться до получения необходимой степени детализации объекта исследования.

Выводы. Метод вложенных диагональных областей и подобластей позволит достичь высокой точности при относительно небольшом числе конечных элементов, что весьма актуально при решении трехмерных задач. Методика позволит изучить геомеханические процессы в разрушаемом структурно-неоднородном углепородном массиве, оценить напряженно-деформированное состояние и определить его влияние на устойчивость горных выработок при отработке угольных месторождений.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- **1.** Фадеев А.Б. Метод конечных элементов в геомеханике. М.: Недра, 1987. 221 с.
- 2. К о р н е в Е.С. Методика оценки адекватности математической модели прогноза смещений пород кровли реальным геомеханическим процессам. — В кн.: Наукоемкие технологии разработки и использования минеральных ресурсов: Сб. науч. статей / Под общей ред. В.Н. Фрянова. — Новокузнецк: изд. СибГИУ, 2010. С. 203 — 207.
- 3. Павлова Л.Д. Моделирование геомеханических процессов в разрушаемом углепородном массиве. — Новокузнецк: изд. СибГИУ, 2005. — 239 с.

© 2013 г. А.М. Никитина Поступила 12 декабря 2013 г.