УДК 661.665

Л.С. Ширяева, И.В. Ноздрин, Г.В. Галевский, В.В. Руднева

Сибирский государственный индустриальный университет

ИССЛЕДОВАНИЕ ГАЗОНАСЫЩЕННОСТИ, ОКИСЛЕННОСТИ И ТЕРМООКИСЛИТЕЛЬНОЙ УСТОЙЧИВОСТИ НАНОКАРБОНИТРИЛА ХРОМА

В современных условиях освоение нанотехнологий определяет уровень конкурентоспособности государств в мировом сообществе и степень обеспечения их национальной безопасности. Одним из важных направлений развития нанотехнологий является получение материалов на основе карбидов и карбонитридов переходных металлов. Такие материалы, как правило, тугоплавкие, имеют высокую твердость, износо- и коррозионностойкие. Однако для эффективного применения карбидов и карбонитридов в наносостоянии в составе композиционных материалов необходимо исособенностей следование физикохимических свойств.

Целью настоящей работы является исследование газонасыщенности, окисленности и термоокислительной устойчивости нанокарбонитрида хрома состава $Cr_3(C_{0.8}N_{0.2})_2$ с размерным диапазоном частиц 20-50 нм — перспективного материала для композиционных гальванических покрытий, модифицирования металлических сплавов и полимеров.

Газонасыщенность и окисленность нанокарбонитрида хрома при исследовании взаимодействия с атмосферными газами изучались в зависимости от состава сорбированных на поверхности частиц газов, величины удельной поверхности, продолжительности контактирования с воздухом.

Исследование газонасыщенности нанокарбонитрида хрома в зависимости от состава сорбированных на поверхности частиц газов и продолжительности контактирования с воздухом проводилось весовым методом на образцах двух типов:

- не контактировавших с воздухом;
- не контактировавших с воздухом и подвергнутых вакуумтермической обработке при 973 К в течение 0,5 ч для удаления монооксида углерода [1]. Взвешивание образцов проводилось через каждые 2 ч в течение первых суток и далее через сутки. Содержание кислорода в карбонитриде определялось методом высокотемпературной экстракции. В качестве объектемпературной экстракции. В качестве объектемпературной экстракции.

тов исследования были выбраны нанопорошки, полученные плазменным синтезом из хрома (КНХ-1), оксида хрома Сг₂О₃ (КНХ-2) и трихлорида хрома CrCl₃ (КНХ-3) [2]. Образцы синтезированы с использованием очищенных от кислорода и паров воды технологических газов и характеризуются отсутствием на рентгенограммах кислородсодержащих соединений. Образцы КНХ-3 предварительно отжигались в аргоне в течение 0.5 ч при температуре 473 ± 5 К для удаления хлористого водорода до остаточного количества не более 0,1 % (по массе), что позволило предотвратить разложение соединений при контакте с парами воды на воздухе. Для определения состава и оценки количества адсорбированных при синтезе и хранении газов образцы исследовались методами термодесорбционной масс-спектрометрии и термографии, а газообразные продукты десорбции - хроматографически [3, 4]. Сочетание этих методов анализа позволяет практически однозначно охарактеризовать состав продуктов термодесорбции и оценить их количество. Основные характеристики образцов приведены в табл. 1. Можно видеть, что количество адсорбированных при синтезе газов колеблется в пределах 1,6 -2,1 % (по массе), а основными адсорбированными газами в зависимости от технологического варианта синтеза являются N2, Н2, СО. Газообразные соединения со значениями масс 12 -16, 26 - 27, 36 - 38 хроматографически не обнаруживаются, что свидетельствует об их нестабильности или содержании их в исследуемых образцах на уровне, не превышающем 0,2 % (по

Термоокислительная устойчивость синтезированных нанодисперсных порошков карбонитрида хрома исследовалась с помощью термогравиметрического анализа в интервале температур 298 – 1373 К. За температуру начала окисления принималась температура, при которой масса образца изменялась на 1 %. Исследования проводились на дериватографе «Паулик-Паулик-Эрдей» с эталоном из оксида Al_2O_3 при скорости нагрева 5 °С/мин. Относи-

Таблица 1

Основные характеристики образцов нанокарбонитрида хрома на различных стадиях исследования

Vanavanavanava	Значение характеристики для образца			
Характеристика	KHX-1	КНХ-2	KHX-3	
Удельная поверхность, м ² /кг	32000	34000	31000	
Общее содержание кислорода, % (по массе)	0,55*/4,11**	2,66/3,61	0,74/9,22	
Молекулярные массы продуктов десорбции	2, 14, 15, 26-28*/2, 14, 16-18, 26-28**	2, 13-15, 26-28/2, 13-16, 18, 24-28	2, 13-15, 26-28, 36-38/2, 13-16, 18, 26-28, 36-38	
Состав продуктов десорбции	H ₂ , N ₂ */H ₂ , N ₂ , O ₂ , H ₂ O**	H ₂ , N ₂ , CO/ O ₂ , H ₂ O, CO, H ₂ , N ₂	H ₂ , N ₂ /H ₂ , N ₂ , O ₂ , H ₂ O	
Количество адсорбированных газов, % (по массе)	1,61**/6,33**	1,92/1,16	2,01/9,13	

*/** – характеристики порошков до и после контактирования с воздухом.

тельная ошибка измерений не превышает 3 %. В качестве объектов исследования использовались образцы карбонитрида хрома, синтезированные по варианту КНХ-1, характеристики которых приведены в табл. 2.

Исследуемые образцы подвергались рафинированию, обработке раствором соляной кислоты [5], что позволило снизить в них содержание свободных углерода и хрома до 0,3 — 0,5 % (по массе). Для предотвращения тления нанопорошков карбонитрида хрома толщина насыпного слоя при съемке дериватограмм не превышала 1 мм.

При хранении на воздухе порошки карбонитрида хрома активно адсорбируют кислород и влагу. Максимальный привес образцов наблюдается в течение первых 20 – 24 ч, после чего в течение 10 суток масса образцов остается практически неизменной (табл. 1, рис. 1).

За это время в порошках значительно возрастает содержание кислорода. Однако и при таком достаточно высоком содержании кисло-

рода его соединения с хромом на рентгенограммах не регистрируются. Из исследуемых образцов наименьшей сорбционной активностью отличается образец КНХ-2, адсорбирующий на стадии синтеза монооксид углерода,

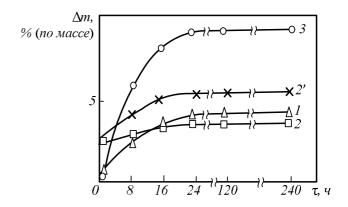


Рис. 1. Увеличение массы образцов при контакте их с воздухом: $I-{\rm KHX}$ -1, $2-{\rm KHX}$ -2, $3-{\rm KHX}$ -3, $2'-{\rm KHX}$ -2 вакуумтермически обработанный

Таблица 2

Характеристики образцов карбонитрида хрома различной дисперсности

Vongeronuerue	Значение характеристики для образца номер				
Характеристика	1	2	3	4	5
Содержание $Cr_3(C_{0,8}N_{0,2})_2$ в карбонитриде, % (по массе)	90,02	90,63	91,01	91,85	93,10
Удельная поверхность, м ² /кг	51000	42000	35000	27000	21000
Размер* частиц, нм	22	28	32	41	53
Содержание кислорода после синтеза, % (по массе)	0,88	0,78	0,54	0,61	0,56
Окисленность карбонитрида после синтеза (кг $O \cdot M^{-2}$) $\cdot 10^7$	1,76	1,90	1,54	2,26	2,67
Содержание кислорода после контакта с воздухом в течение 24 ч, % (по массе)	7,42	5,22	4,11	2,82	1,81
Окисленность карбонитрида после контакта с воздухом в течение 24 ч (кг O·м^{-2})· 10^7	14,55	12,43	11,74	10,44	8,62

^{*} Рассчитывается по величине удельной поверхности.

высокая пассивирующая способность которого достаточно давно используется в технологии наносистем [4]. Удаление монооксида углерода с поверхности частиц КНХ-2 значительно повышает их сорбционную способность (рис. 1, кривая 2′).

Исследование окисленности нанокарбонитрида хрома в зависимости от величины его удельной поверхности и продолжительности контактирования с воздухом проводилось на пяти образцах, характеристики которых приведены в табл. 2.

Можно констатировать значительное повышение окисленности карбонитрида в первые 24 ч для всех исследуемых образцов. При этом зависимость величины окисленности от размера частиц карбонитрида описывается уравнением вида (при значениях критерия Фишера $F/F_{0.95}(3,10) = 0,128/3,7$)

$$a = 90 (d_{y} - 3.3)^{-0.68} + 2.25,$$
 (1)

где a — окисленность, кг $O \cdot M^{-2}$; $d_{\rm q}$ — размер частиц карбонитрида хрома, нм.

При увеличении размера частиц от 22 до 53 нм окисленность изменяется от $14,55 \cdot 10^{-7}$ до $8,62 \cdot 10^{-7}$ кг $O \cdot m^{-2}$.

Все образцы синтезированы по варианту КНХ-1 карбидизацией хрома метаном в плазменном потоке азота. Результаты исследований представлены в табл. 2 и на рис. 2.

Характеристики термоокислительной устойчивости нанокарбонитрида хрома приведены в табл. 3, а их дериватограммы — на рис. 3. Для всех дериватограмм в интервале температур от $542 \div 566$ до $843 \div 860$ К характерны значительные экзотермические эффекты окисления карбонитрида. При массе навески образцов $0,281 \div 0,323$ г в области температур от $780 \div 800$ до $820 \div 840$ К на дериватограммах появляется второй экзотермический эффект, обусловленный окислением свободного углерода. При уменьшении массы навески до 0,1000 г оба эффекта могут быть разделены (рис. 3, e), но при этом окисление свободного

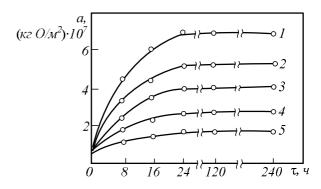


Рис. 2. Изменение окисленности образцов карбонитрида хрома при контакте их с воздухом

углерода происходит в более высокотемпературном интервале (873 – 900 K). Зависимость температуры начала окисления карбонитрида хрома на воздухе от размера частиц описывается уравнением вида

$$T_{\text{ок}} = 6.2 (d_{\text{ч}} - 18)^{0.5} + 529.5$$

при F/F_{0.95}(3,10) = 0,331/3,7, (2)

где $T_{\text{ок}}$ – температура начала окисления, К.

При контакте с воздухом происходит интенсивная адсорбция нанокарбонитридом хрома атмосферных газов, в первую очередь паров воды и кислорода, обусловливающая при повышении температуры возможность поверхностного окисления частиц.

Анализ дериватограмм и термохимические расчеты показывают, что температура начала окисления карбонитрида хрома зависит от наноуровня и при изменении размера частиц от 22 до 53 нм возрастает от 542 до 566 К. Взаимодействие нанопорошков карбонитрида хрома с кислородом воздуха протекает в два этапа: окисление карбонитрида в интервале температур от 542 ÷ 566 до 843 ÷ 860 К с образованием оксида и одновременным выделением свободного углерода и сгорание его в интервале температур от 780 ÷ 800 до 820 ÷ 840 К. Следовательно, карбонитрид хрома по термоокислительной устойчивости близок к карбонитридам ванадия (температура начала окисле-

Таблица 3 **Характеристики термоокислительной устойчивости нанокарбонитрида хрома**

Размер*	Температура	Состав продуктов
частиц, нм	окисления, К	окисления
22	$(542 - 843) \pm 10$	Cr_2O_3
28	$(548 - 847) \pm 10$	Cr_2O_3
32	$(554 - 850) \pm 10$	Cr_2O_3
41	$(560 - 855) \pm 10$	Cr_2O_3
53	$(566 - 860) \pm 10$	Cr ₂ O ₃
* Рассиитан	по велицине улел	пой поверущости

^{*} Рассчитан по величине удельной поверхности.

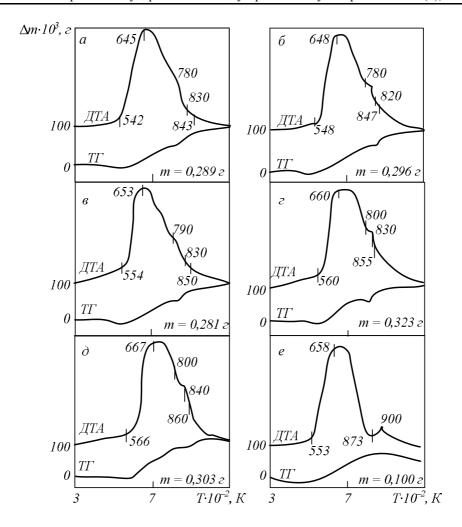


Рис. 3. Дериватограммы нанопорошков карбонитрида хрома с размером частиц 22(a), 28(b), 32(e), 41(c), 53(d), 30(e) нм

ния 553 ± 8 К для частиц размером 45 нм), титана (548 ± 8 К для 48 нм), циркония (560 ± 8 К для 49 нм) [6].

Анализ уравнения (2) показывает, что термоокислительная устойчивость нанопорошков карбонитрида изменяется значительно медленнее, чем характеристики их дисперсности. По-видимому, данное свойство карбонитрида хрома определяется факторами, более сложным образом связанными с размером частиц. Таким фактором может быть энергия возбуждения поверхностных атомов, определяемая степенью искажения кристаллических решеток при переходе на наноуровень.

Выводы. Проведено исследование окисленности и термоокислительной устойчивости нанокарбонитрида хрома. Установлено, что при хранении на воздухе нанокарбонитрид хрома адсорбирует кислород и влагу. Значительное повышение окисленности карбонитрида хрома происходит в первые 24 ч. При этом зависимость окисленности a от размера карбонитридных частиц $d_{\rm q}$ описывается уравнением вида a=90 $(d_{\rm q}-3,3)^{-0.68}+2,25$. При

увеличении размера частиц от 22 до 53 нм окисленность изменяется от $14,55\cdot 10^{-7}$ до $8,62\cdot 10^{-7}$ кг $O\cdot \text{м}^{-2}$. Наименьшую сорбционную активность имеет карбонитрид, адсорбирующий на стадии синтеза монооксид углерода. Также установлено, что по термоокислительной устойчивости на воздухе наноразмерный карбонитрид хрома близок к карбонитридам ванадия, титана и циркония того же наноуровня. Температура начала его окисления зависит от наноуровня. Эта зависимость описывается уравнением вида $T_{\text{ок}} = 6,2 \left(d_{\text{ч}} - 18\right)^{0.5} + 529,5$.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Руднева В.В. Исследование сорбционной активности ультрадисперсных порошков тугоплавких соединений в воздушной среде // Изв. вуз. Черная металлургия. 2006. № 5. С. 16 19.
- 2. Ноздрин И.В., Ширяева Л.С., Руднева В.В. Плазменный синтез и физико-химическая аттестация нанокарбо-

- нитрида хрома // Изв. вуз. Черная металлургия. 2012. № 12. С. 3 8
- 3. Ноздрин И.В., Галевский Г.В., Руднева В.В. Исследование изменения химического состава борида хрома при рафинировании, хранении и нагревании на воздухе // Изв. вуз. Черная металлургия. 2013. № 10. С. 3 10.
- 4. Руднева В.В. Наноматериалы и нанотехнологии в производстве карбида кремния: монография: в 3 т. Дополнительный том. Плазменный синтез и компактирование нанокарбида кремния. М.: Флинта: Наука, 2011. 241 с.
- 5. Ш и р я е в а Л.С. Разработка научных и технологических основ плазмометаллургического производства карбида хрома: автореф. дис. к.т.н. Новокузнецк, 2013. 20 с
- **6.** Руднева В.В., Галевский Г.В. Термоокислительная устойчивость нанопорошков тугоплавких карбидов и боридов // Изв. вуз. Черная металлургия. 2007. № 4. С. 20 24.

© 2014 г. Л.С. Ширяева, И.В. Ноздрин, Г.В. Галевский, В.В. Руднева Поступила 20 февраля 2014 г.

УДК 620.193.4/5

В.Ф. Горюшкин, Ю.В. Бендре, С.А. Зенцова, А.Ю. Гагарин

Сибирский государственный индустриальный университет

МЕХАНИЗМ И КИНЕТИЧЕСКИЕ ПАРАМЕТРЫ ГАЗОВОЙ КОРРОЗИИ ТИТАНОВОГО СПЛАВА ВТ6 В ТЕТРАХЛОРИДЕ УГЛЕРОДА

Ранее в работе [1] были изучены механизм и кинетика газовой коррозии технически чистого титана марки ВТ1-0 в атмосфере тетрахлорида углерода и интервале температуры 573 – 773 К. Методом химических реакций в сочетании с рентгенофазовым анализом установлено, что при 673 К и выше металл при коррозии переходит в газовую фазу в составе тетрахлорида титана с постоянной скоростью при изотермической выдержке, а на образце образуется пористая незащитная пленка аморфного углерода:

$$Ti_{TB} + CCl_{4\pi ap} \rightarrow C_{TB} + TiCl_{4\pi ap}.$$
 (1)

По результатам ряда параллельных гравиметрических измерений определили кинетические параметры реакции (1), которую можно рассматривать и как реакцию хлорирования титана тетрахлоридом углерода.

Между тем, в промышленности широко используется не технически чистый титан, а его сплавы [2]. Пожалуй, наибольшее значение имеет сплав ВТ6 (IMI 318), который относится к числу первых отечественных конструкцион-

ных свариваемых титановых сплавов. По фазовому составу этот сплав относится к двухфазным $\alpha + \beta$ сплавам мартенситного класса с небольшим количеством β -фазы, наличие которой обусловливает их способность к упрочняющей термической обработке.

Настоящая работа посвящена изучению механизма и кинетики газовой коррозии сплава ВТ6 в атмосфере тетрахлорида углерода.

Экспериментальная часть

Вещества и аппаратура. Как и в работе [1], использовали цилиндрические образцы диам. 19 – 20 и толщиной 1 – 4 мм сплава ВТ6 двух партий. Результаты рентгеноспектрального анализа* образцов сплава приведены ниже (последовательный рентгенофлуоресцентный волнодисперсионный спектрометр Shimadzu XRF-1800):

тия Ti Al V Si Fe Ni С 1 93,14 6,21 Да 0,055 0,11 0,027 0,	
<i>1</i> 93,14 6,21 Да 0,055 0,11 0,027 0,	ТИЯ
	1
2 92,77 6,73 Да 0,031 0,11 0,026 0,	2

^{*} Рентгеноспектральный анализ образцов выполнила зав. ЛЭКИМО СибГИУ Н.А. Кривогузова.