- 26. Пузырев Е.М., Щуренко В.П., Шарапов М.А. Устройство для сжигания твердого топлива. Патент РФ № 2126113. . Бюл. Изобретений. № 4. 1999.
- **27.** Пузырев Е.М., Щуренко В.П., Щербаков Ф.В. Вихревая топка. Патент РФ № 2126932. Бюл. Изобретений. 1999. № 6.
- 28. Голубев В.А., Пузырев Е.М., Пузырев М.Е. Использование вихревых топок «Торнадо» в паровых котлах. Электронный ресурс: http://www.pem-energo.ru/ispolzovanie-vihrevyh-topok-tornado-v-parovyh-kotlah (дата обращения 20.05.2014).
- 29. Исследования и разработки Сибирского отделения Российской академии наук в области энергоэффективных технологий / Отв. ред. С.В. Алексеенко (Интеграционные проекты СО РАН; Вып. 20). Новосибирск: Изд-во СО РАН, 2009. 405 с.

© 2014 г. М.Н. Башкова, С.А. Казимиров, М.В. Темлянцев, В.И. Багрянцев, А.А. Рыбушкин, К.С. Слажнева Поступила 21 мая 2014 г.

УДК 697.132.3

Д.Б. Чапаев

Сибирский государственный индустриальный университет

ОЦЕНКА ЭКОНОМИИ ТОПЛИВА В РЕЗУЛЬТАТЕ СНИЖЕНИЯ ТЕПЛОПОТРЕБЛЕНИЯ ЗА СЧЕТ ТЕПЛОПОСТУПЛЕНИЙ ОТ СОЛНЕЧНОЙ РАДИАЦИИ ПРИ ИСПОЛЬЗОВАНИИ АВТОМАТИЗИРОВАННОЙ СИСТЕМЫ ОТОПЛЕНИЯ ЖИЛОГО ЗДАНИЯ

Один из положительных моментов автоматизации систем отопления зданий — сокращение расхода топлива для теплогенератора за счет отклика систем на внешние возмущения, связанные с дополнительными теплопоступлениями. Одним из видов дополнительных теплопоступлений является поток солнечной радиации на здания, интенсификация которого приходится на осенние и весенние месяцы.

В настоящей работе для климатических условий г. Новокузнецка выполнена оценка снижения расхода топлива на отопление жилого здания вследствие снижения его теплопотребления за счет теплопоступлений от солнечной радиации в случае инсталляции в систему отопления радиаторных терморегуляторов и в узел управления теплоносителем — схем погодной компенсации. Бытовые и иные виды теплопоступлений в помещения, дополнительно увеличивающие процент экономии топлива, в расчете не учитывали.

Годовой расход топлива (B) для отопления здания определяется по формуле

$$B = \frac{Q}{\eta Q_{p}} = \frac{\sum_{i=1}^{m} (k_{i} F_{i})_{\tau_{2}}}{\eta Q_{p}} \int_{\tau_{1}}^{\sigma} \Delta t_{q}(\tau) d\tau, \quad (1)$$

где Q — годовое теплопотребление системой отопления здания; η — коэффициент полезного действия теплогенератора; $Q_{\rm p}$ — располагаемая теплота топлива; k_i и F_i — коэффициенты теплопередачи и площади поверхности i-х наружных ограждений здания; m — количество всех i-х наружных ограждений; τ_1 и τ_2 — даты начала и конца отопительного периода; $\Delta t_q(\tau)$ — температурный перепад между средами (внутренним воздухом помещений и наружным воздухом), разделенными наружными конструкциями здания, зависящий от времени τ .

Величина Q численно равна суммарным за отопительный период трансмиссионным теплопотерям здания, которые составляют основную долю его теплопотерь. Значения Q можно определить по уравнению теплопередачи через

наружные строительные конструкции здания [1]:

$$Q = \sum_{i=1}^{m} (k_i F_i) \int_{\tau_1}^{\tau_2} \Delta t_q(\tau) d\tau.$$

С целью учета влияния солнечной радиации на годовой расход топлива при определении $\Delta t_q(\tau)$ предлагается учитывать (кроме собственно перепада температур внутреннего и наружного воздуха $\Delta t_T(\tau)$) также перепад температур внутреннего и наружного воздуха, обусловленный потоком солнечной радиации на здание (поправка на солнечную радиацию $\Delta t_R(\tau)$):

$$\Delta t_q(\tau) = \Delta t_T(\tau) - \Delta t_R(\tau). \tag{2}$$

Эта поправка принята со знаком «—», так как поток солнечной радиации является дополнительным теплопоступлением, снижающим значение $\Delta t_a(\tau)$.

Величина $\Delta t_q(\tau)$ — это такой перепад температур внутреннего и наружного воздуха $\Delta t_T(\tau)$, при котором здание в условиях отсутствия солнечной радиации имело бы те же теплопотери, которые оно имеет при данной температуре наружного воздуха и потоке солнечной радиации.

Значения $\Delta t_T(\tau)$ и $\Delta t_R(\tau)$ определяются по следующим формулам:

$$\Delta t_T(\tau) = t_{\rm R} - t_{\rm H}(\tau); \tag{3}$$

$$\Delta t_R(\tau) = \mu \, \varepsilon \, R_{\rm cr} J(\tau),$$
 (4)

где $t_{\rm B}$ — температура внутреннего воздуха помещений; $t_{\rm H}(\tau)$ — температура наружного воз-

духа, зависящая от времени τ ; μ — относительная площадь светопрозрачных ограждений здания; ϵ — коэффициент пропускания светопрозрачными ограждениями суммарной солнечной радиации; $R_{\rm cs}$ — термическое сопротивление светопрозрачного ограждения; $J(\tau)$ — поток суммарной (прямой и рассеянной) солнечной радиации на поверхность окон, зависящий от времени τ .

Для решения указанной задачи в формуле (3) можно принять постоянное во времени осредненное по зданию нормированное допустимое значение $t_{\rm B}$ по ГОСТ 30494 – 2011. Формула (4) представлена из исследования Л.С. Гандина [2].

Расчет значения B можно произвести с достаточной для инженерной практики точностью, если в формулы (3) и (4) подставлять среднемесячные значения величин $t_{\rm H}$ и J.

Расчет годового хода среднемесячных перепадов температур выполнен для жилого здания, расположенного в г. Новокузнецке, при следующих исходных данных: $t_{\rm B} = 20$ °C; значения $t_{\rm H}$ принимали равными среднемесячным по СП 131.13330.2012; $\mu = 0.3$; $\epsilon = 0.67$ (для окон с двойным остеклением без загрязнений осадками); $R_{\rm CB} = 0.44 \, {\rm M}^2 \cdot {\rm ^oC}/{\rm BT}$ (двойное остекление при коэффициентах теплоотдачи снаружи $\alpha_{\rm H} = 23 \, {\rm BT/(M}^2 \cdot {\rm ^oC})$ и с внутренней стороны стены $\alpha_{\rm B} = 8.7 \, {\rm BT/(M}^2 \cdot {\rm ^oC})$). Значения J по месяцам принимали по СП 131.13330.2012 для восточной ориентации окон; эти значения соответствуют, согласно данным работы [2], среднему значению по сторонам горизонта.

Расчет годового хода среднемесячных перепадов температур $\Delta t_T(\tau)$, $\Delta t_R(\tau)$ и $\Delta t_q(\tau)$ представлен в таблице.

Расчет годового хода среднемесячных перепадов температур

		_			
Месяц	t _H , °C	J , BT/ M^2	Δt_T , °C	Δt_R , °C	Δt_q , °C
январь	-17,2	46	37	-4	33
февраль	-15,5	82	36	-7	28
март	-8,1	129	28	-11	17
апрель	2,0	181	18	-16	2
май	10,0	194	10	-17	-7
июнь	16,6	203	3	-18	-15
июль	18,8	198	1	-18	-16
август	15,8	172	4	-15	-11
сентябрь	10,0	143	10	-13	-3
октябрь	2,2	93	18	-8	10
ноябрь	-8,3	59	28	-5	23
декабрь	-15,4	40	35	-4	32

П р и м е ч а н и е. Положительные значения перепадов температур – теплопотери помещениями, отрицательные – теплопоступления в помещения.

Для удобства анализа полученной информации по результатам расчета построены графики (рис. 1); показаны только месяцы отопительного периода, то есть когда значения Δt_q больше нуля (согласно формуле (1) условие $\Delta t_q > 0$ соответствует положительному значению теплопотребления).

Положительные значения Δt_q в формуле (1) показывают наличие теплопотерь зданием, когда необходима работа системы отопления. Годовой ход положительных значений $\Delta t_q(\tau)$ определяет требуемую продолжительность отопительного периода. Переход кривой $\Delta t_q(\tau)$ (рис. 1) через горизонтальную линию $\Delta t = 0$ задает значения начала и конца отопительного периода (соответственно τ_1 и τ_2), рассчитанные при учете совместного действия на здание температуры наружного воздуха и солнечной радиации; значения τ_1 и τ_2 отмечены вертикальными линиями.

Значение B можно найти с достаточной точностью из графика годового хода $\Delta t_q(\tau)$ по формуле прямоугольников с шагом $\tau_{\rm M}$, равном одному месяцу:

$$B \approx \frac{\sum_{i=1}^{m} (k_i F_i)}{\eta Q_p} \tau_{M} \sum_{j=1}^{n} (\Delta t_q)_j, \qquad (5)$$

где $\tau_{\rm M}$ — средняя продолжительность месяца; n — количество j-х месяцев отопительного периода (учитываются только месяцы отопительного периода).

Определим значение B для традиционной системы отопления здания без термостатического регулирования (то есть для системы, теплопотребление которой не зависит от теплопоступлений за счет солнечной радиации), обозначив его B_T и исключив из формулы (2) слагаемое $\Delta t_R(\tau)$ (кривая $\Delta t_T(\tau)$ представлена на рис. 1).

Начало и конец отопительного периода должны определяться условием $\Delta t_T(\tau) > 0$, то есть переходом температуры через значение $t_{\rm H} = t_{\rm B}$, когда отсутствуют теплопотери помещениями, что в условиях Сибирского региона означало бы почти круглогодичную работу неавтоматизированной системы отопления. В практике теплоснабжения время начала τ_1 и конца τ_2 отопительного периода приняты, согласно СП 124.13330.2012, при среднесуточной температуре наружного воздуха 8 °C за пять суток подряд $t_{\rm H}(\tau_1) = t_{\rm H}(\tau_2)$. Если принять значение $t_{\rm B}$ для жилых помещений 20 °C, то в настоящее время даты начала и конца отопи-

тельного периода в условиях г. Новокузнецка определяются переходом кривой $\Delta t_T(\tau)$ через горизонтальную линию $\Delta t = 12$ °C, а время, когда $\Delta t_T(\tau)$ более 12 °C, определяет продолжительность отопительного периода (вертикальные штриховые линии).

При сопоставлении сроков начала и конца отопительного периода, рассчитанных при учете совместного действия температуры $t_{\rm H}$ и солнечной радиации, с определенными только по температуре $t_{\rm H}$, видно, что в связи с избытком солнечной радиации весной целесообразно конец отопительного периода перенести так, как это показано на графике (с 10 мая на 20 апреля). При этом температура наружного воздуха конца отопительного периода $t_{\rm H}(\tau_2) = t_{\rm B} - \Delta t_T(\tau_2) = 20 - 16 = 4$ °C, где значение $\Delta t_T(\tau_2) = 16$ °C принято по рис. 1.

Таким образом, избыток солнечной радиации в апреле-мае позволяет сократить отопительный период в г. Новокузнецке на 20 дней без заметного снижения комфортных условий в помещениях.

Значение B_T можно найти с достаточной точностью из графика годового хода $\Delta t_T(\tau)$ по формуле прямоугольников с шагом $\tau_{\rm M}$, равным одному месяцу:

$$B_T \approx \frac{\sum_{i=1}^{m} (k_i F_i)}{\eta Q_p} \tau_{M} \sum_{j=1}^{n} (\Delta t_T)_j . \tag{6}$$

Экономия годового расхода топлива для теплогенератора в результате автоматизации системы отопления здания (установки радиаторных терморегуляторов и схемы погодной компенсации), связанная с учетом влияния солнечной радиации на теплопотребление отопительной системой, составит

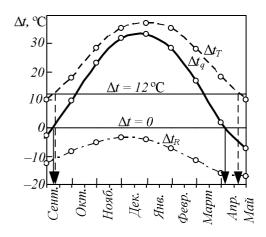


Рис. 1. Перепад температур с сентября по май для г. Новокузнецка

$$\Delta = \frac{B_T - B}{B_T} 100 \% = \frac{\sum_{j=1}^{n} (\Delta t_T)_j - \sum_{j=1}^{n} (\Delta t_q)_j}{\sum_{j=1}^{n} (\Delta t_T)_j} 100 \% . \tag{7}$$

Аналогичным образом можно уточнить ежемесячную экономию расхода топлива (при подстановке в формулу (7) вместо суммарных значений перепадов температур соответствующих перепадов температур отдельных месяцев). Значения снижения расхода топлива в случае учета системой потока солнечной радиации по месяцам отопительного периода представлены на рис. 2.

Экономия топлива за счет теплопоступлений от солнечной радиации в осенние месяцы (октябрь, ноябрь) составляет в среднем 30 % (за два месяца), в весенние месяцы (март, апрель) — 65 % за два месяца. Даже в наиболее холодные месяцы года (декабрь, январь) указанные теплопоступления позволяют снизить теплопотребление системой отопления на 10 %.

По результатам расчета годового хода перепадов температур имеем:

$$\sum_{j=1}^{n} \left(\Delta t_q \right)_j = 145$$
 °С (суммируются месяцы,

когда $\Delta t_a > 0$);

$$\sum_{j=1}^{n} (\Delta t_T)_j = 210 \, ^{\circ}\text{C}$$
 (суммируются месяцы,

когда $\Delta t_T(\tau) > 12 \, ^{\circ}\text{C}$);

$$\Delta = (210-145)\cdot 100/210 \approx 30 \%$$
.

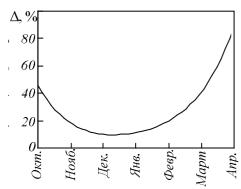


Рис. 2. Ежемесячная экономия топлива

Выводы. Для условий г. Новокузнецка годовая экономия топлива составит 30 %. Такое снижение затрат в весенний период, а также в те зимние дни, когда наблюдается значительный поток солнечной радиации, на фоне увеличения тарифов на отопление зданий ведет к стимулированию работ в области автоматизации систем отопления. Причем в расчете не учитывали теплопоступления от других источников (например, от бытового оборудования) и периодическое суточное увеличение плотности потока солнечной радиации в ясные дни, увеличивающие рассчитанный процент экономии. Однако следует сказать о необходимости комплексного подхода к созданию энергосберегающих систем теплопотребления: кроме обязательной инсталляции в системы терморегуляторов в совокупности со схемами погодной компенсации целесообразной является реализация схем пофасадного регулирования, а также работы по улучшению теплотехнических характеристик зданий (теплоизоляция наружных строительных конструкций и т.п.). Комплексный подход к внедрению энергосберегающих мероприятий обеспечит значительно больший экономический эффект.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Басин А.С., Чапаев Д.Б., Смирнова Е.В. Учет метеорологических факторов, прогрева конструкций и инфильтрационных теплопотерь в расчете теплового потока на отопление жилых зданий района. В кн.: Новые строительные технологии 2010: сб. науч. трудов. Новокузнецк: изд. СибГИУ, 2010. С. 263 265.
- 2. Гандин Л.С. О расчете длительности отопительного периода и норм отопления в различных климатических условиях. В кн.: Труды Главной геофизической обсерватории. Л.: Гидрометеоиздат, 1971. Вып. 285. С. 3 16.

© 2014 г. Д.Б. Чапаев Поступила 16 июня 2014 г.