УДК 621.791

В.Г. Шморгун, Ю.П. Трыков, А.И. Богданов, А.О. Таубе, Д.А. Евстропов Волгоградский государственный технический университет

КИНЕТИКА ВЗАИМОДЕЙСТВИЯ АЛЮМИНИЯ И НИКЕЛЯ ПРИ ЖИДКОФАЗНОМ ФОРМИРОВАНИИ ДИФФУЗИОННОЙ ЗОНЫ^{*}

Технология получения нового класса конструкционных материалов - слоистых интерметаллидных композитов – предусматривает сварку взрывом многослойных пакетов и их последующую прокатку до толщины, обеспечивающей после завершающей высокотемпературной термической обработки заданное объемное соотношение основных и образующихся в результате диффузии интерметаллидных слоев [1]. По данным ранее выполненных исследований [2 – 4] добиться значительного увеличения интенсивности диффузионных процессов на межслойных границах можно за счет проведения термической обработки при температурах выше температуры эвтектического превращения (то есть при так называемом контактном плавлении [2, 3]), а также в присутствии жидкой фазы [4].

Целью настоящей работы являлось исследование фазового состава диффузионной зоны и структуры, полученной при нагревах слоистых композитов системы Al – Ni выше температуры эвтектического превращения.

Исследования проводили на сваренных взрывом биметаллических образцах состава алюминий АД1 + никель НП1 (толщина слоев составляла 4 и 4 мм). Металлографические исследования выполняли на оптическом микроскопе «Olympus BX61». Параметры структуры биметалла измеряли при обработке цифровых изображений с помощью пакета программ «Analy-SIS» (Soft Imaging System Gmbh). Микротвердость структурных составляющих определяли на приборе ПМТ-3М под нагрузкой 0,2 – 1,0 Н. Для исключения растекания и окисления алюминиевого слоя термическую обработку образцов проводили в обмазке (жидкое стекло и тальк). Для определения фазового состава диффузионной зоны проводили электронно-оптические исследования на растровом двухлучевом электронном микроскопе системы Versa 3D.

Металлографический анализ зоны соединения биметалла Ni — Al после его термической обработки в условиях контактного плавления (640 °C) и в присутствии жидкой фазы (660 и 700 °C) показал, что на межслойной границе, примыкающей к никелевому слою, образовалась сплошная диффузионная зона, состоящая из двух разделенных четкой границей прослоек (рис. 1). Со стороны алюминия кристаллизовалась прослойка в виде вытянутых вдоль границы ячеистых образований, а также в виде образований игольчатой и округлой формы твердостью около 7,5 ГПа. Твердость сплошной прослойки со стороны никеля составляет 9,7 ГПа.

Исследование фазового состава диффузионной зоны показали (рис. 2, δ), что со стороны никеля образуется интерметаллид Ni₂Al₃ (содержание алюминия составляет примерно 56,3 % (по массе)), а со стороны алюминия – NiAl₃ (содержание алюминия 39,8 % (по массе)). В алюминиевой матрице присутствуют только включения интерметаллида NiAl₃ (рис. 2, α ; таблица).

Формирование двухфазного слоя продуктов реакции из алюминида никеля NiAl₃ и закристаллизовавшегося алюминия можно объяснить разрушением сплошного слоя алюминида никеля под действием напряжений, возникающих вследствие различий в объемах прореагировавшего никеля и интерметаллида [5].

Слой алюминида никеля NiAl₃ диффузионной зоны находится в условиях сложного напряженного состояния с напряжениями, увеличивающимися по мере утолщения слоя алюминида никеля или ускорения его роста. Из-за низкой пластичности алюминида никеля NiAl₃ после достижения соответствующей прослойкой некоторой критической толщины и, следовательно, критических напряжений в ней, она может подвергнуться трещинообразованию и разрушению. Отделившиеся от нее фрагменты оголяют новую поверхность, по которой химическая реакция возобновляется. Выделенная на реакционной поверхности теплота экзотермической реакции формирования

 $^{^*}$ Работа выполнена при финансовой поддержке грантов РФФИ (13-08-00066 а и 13-08-97025 р_поволжье_а).

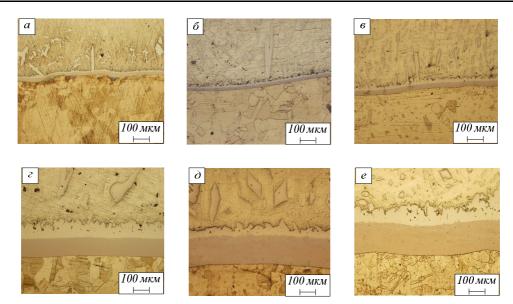
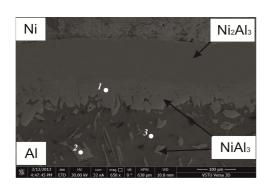



Рис. 1. Микроструктура зоны соединения биметалла Al – Ni после термической обработки при 640 °C (a, ε) , 660 °C (δ, δ) и 700 °C (ϵ, e) с выдержкой в течение 1 ч $(a-\epsilon)$ и 10 ч $(\delta-e)$

алюминида никеля NiAl₃ увеличивает температуры продуктов реакции и контактирующего с ними расплава алюминия, что приводит к возникновению градиента температур и конвективных потоков расплава. Циркулирующие потоки жидкого алюминия в восходящем направлении транспортируют отделившиеся фрагменты алюминида никеля NiAl₃ от зоны реакции. Наличие трещин в отделившихся фрагментах позволяет им во время транспор-

тирования тепловыми токами дополнительно дробиться на более мелкие части.

Объемная доля (рис. 3) и вариативность размеров (рис. 4) данных фрагментов меняются с увеличением времени выдержки при термической обработке. Так, после нагрева при 700 °C и выдержке в течение 15 мин концентрация таких фрагментов в общем объеме слоя алюминия составляет около 8-10 %, при выдержке в течение 1, 10 и 50 ч -15-17, 23-25 и 62-65 % соответственно (рис. 5).

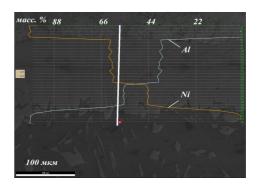


Рис. 2. Изображение СЭМ (a) и распределение концентрации элементов в диффузионной зоне (δ) после термической обработки при 660 °C в течение 10 ч

Химический состав по зонам алюминиевого слоя

	Алюминий		Никель		
Зона	Содержание,	Возможная	Содержание,	Возможная	Фаза
	%	ошибка, %	%	ошибка, %	
1	58,11/75,12	5,11	41,89/24,88	2,86	NiAl ₃
2	58,97/75,77	5,06	41,03/24,23	2,86	NiAl ₃
3	100,00/100,00	0.69	_/_	_	Al

 $[\]Pi$ р и м е ч а н и е. Через косую приведены значения содержания элемента по массе и атом.

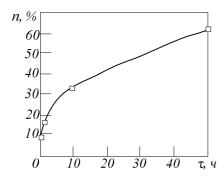


Рис. 3. Изменение объемной доли алюминида никеля $NiAl_3$ в слое алюминия в зависимости от времени выдержки при 700 °C

Суммарная толщина сплошной диффузионной зоны увеличивается с ростом температуры и времени выдержки при термической обработке. Так, например, после отжига в течение 10 ч при 640 °C она составила 140 мкм, при 660 °C – 220 мкм, при 700 °C – 245 мкм (рис. 5). Сравнение полученных результатов и данных по кинетике роста диффузионной прослойки при температурах ниже температуры фазового перехода [6] позволило сделать вывод о том, что термическая обработка в условиях контактного плавления и в присутствии жидкой фазы приводит к некоторой интенсификации диффузионных процессов на межслойной границе в никель-алюминиевом композите.

Выводы. Проведенные исследования позволили выявить кинетику трансформации структуры алюминиевого слоя при нагревах композита Ni — Al, приводящих к образованию жидкой фазы, а также установить фазовый состав сформировавшихся структурных составляющих. Со стороны никеля образуется прослойка интерметаллида Ni_2Al_3 (микротвердость 9,7 $\Gamma\Pi a$), а со стороны алюминия — $NiAl_3$ (микротвердость 7,5 $\Gamma\Pi a$). Слой алюминия трансформируется в твердый раствор с включения-

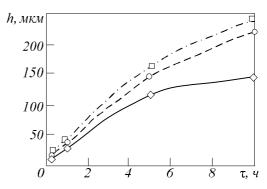


Рис. 5. Зависимость толщины сплошной диффузионной зоны от времени выдержки при термической обработке биметалла Al − Ni при температуре выдержки 640 °C (——), 660 °C (— —) и 700 °C (— · —)

ми интерметаллида $NiAl_3$, объемная доля которых растет с увеличением времени выдержки при термической обработке.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Трыков Ю.П. Комплексные технологические процессы производства композиционных материалов и изделий // Наука производству. 2000. № 1. С. 20 23.
- 2. Ш м о р г у н В.Г., Т р ы к о в Ю.П., С л а у т и н О.В., А б р а м е н к о С.А., П и с а р е в С.П. Влияние высокотемпературной термообработки на структуру и свойства медно-алюминиевого слоистого интерметаллидного композита // Конструкции из композиционных материалов. 2007. № 2. С. 37 42.
- 3. Крашенинников С.В., Кузьмин С.В., Лысак В.И., Чистякова Н.И. Исследование кинетики процесса контактного эвтектического плавления в сваренных взрывом титано-медно-стальных композитах // Перспективные материалы. 2005. № 3. С. 75 80.

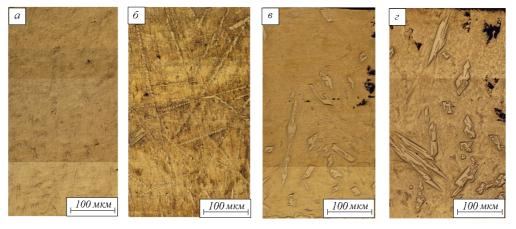


Рис. 4. Микроструктуры алюминиевого слоя после термической обработки при 700 °C в течение 15 мин (a), 1 ч (b), 10 ч (b) и 50 ч (c)

- 4. Гуревич Л.М., Трыков Ю.П., Жоров А.Н., Гурулев Д.Н., Локтюшин В.А. Структурообразование в титано-алюминиевых композитах в присутствии жидкой фазы // Журнал функциональных материалов. 2008. Т. 2. № 4. С. 153—157.
- 5. S l a m a G., V i g n e s A. Coating of niobium and niobium alloys with aluminium. Part II. Hot-dipped coatings // Journal of the Less-common Metals. 1971. № 24. P. 1 21.
- 6. Ш м о р г у н В.Г., Т р ы к о в Ю.П., С л а у т и н О.В., М е т е л к и н В.В., Б о г д а н о в А.И. Кинетика диффузионных процессов в никель-алюминиевой композиции // Изв. вуз. Порошковая металлургия и функциональные покрытия. 2008. № 4. С. 24 28.

© 2014 г. В.Г. Шморгун, Ю.П. Трыков, А.И. Богданов, А.О. Таубе, Д.А. Евстропов Поступила 17 декабря 2013 г.

УДК 669.046:536.421

В.П. Цымбал 1 , С.П. Мочалов 1 , А.А. Оленников 1 , А.М. Огнев 2

¹Сибирский государственный индустриальный университет ²ОАО «Сибэлектротерм» (г. Новосибирск)

МИНИ-МЕТАЛЛУРГИЯ ПОЛНОГО ЦИКЛА НА ОСНОВЕ ПРОЦЕССА СЭР – ОТ РУДЫ ДО СТАЛИ

Металлургия является одной из ключевых отраслей тяжелой индустрии (машиностроения, энергетики, строительства и т.д.) и может стать локомотивом для развития восточных регионов России и других мало обжитых районов. Однако ожидать крупномасштабных инвестиций для строительства традиционных металлургических заводов полного цикла вряд ли возможно, потому что мировая металлургия находится в достаточно сложном положении из-за гигантизма, многозвенности, больших энергетических и материальных затрат.

Например, в Америке в сколько-нибудь удовлетворительном экономическом состоянии находятся металлургические комбинаты, выпускающие широкополосный прокат и имеющие картельные соглашения с машиностроительными фирмами. Сортовой же прокат выпускается преимущественно на мини-заводах, которые являются более экономичными.

Российская металлургия в связи с укрупнениями и поглощениями заводов, произошедшими перед началом кризиса, нацелена главным образом на альянс с приобретенными зарубежными предприятиями. Главной целью крупных собственников металлургических предприятий является повышение капитализации, при этом некоторые российские заводы оказались по существу подсобными предпри-

ятиями зарубежных заводов. Это приводит к монополизму и диктату цен, что снижает эффективность работы отраслей, потребляющих металл. По некоторым позициям выпускаемый металл уступает зарубежному.

Некоторые российские металлургические заводы, в том числе Новокузнецке, находятся в сложном положении. Реконструкция их (так же как и строительство новых заводов полного цикла) требует очень больших капитальных вложений — порядка 700 — 800 долларов на тонну годовой производительности. В настоящий момент таких вложений не ожидается.

В то же время в Китае значительная часть металлургии является региональной. Она не связана с крупными мировыми металлургическими монстрами и решает главным образом задачи регионов. При этом эффективность этой металлургии значительно выше в связи с меньшими перевозками как сырья, так и готовой продукции.

Реальным направлением развития восточных районов страны является создание региональной металлургии и в России. К этой мысли постепенно приходят потребители металла. В частности, этот вопрос поднимался на совещании переработчиков металла, состоявшемся в г. Новосибирске в августе 2010 года, где было подчеркнуто, что машиностроительные заводы находятся в зависимости от крупных ме-