УДК 69.058:728.48

Н.Н. Алешин, Д.Н. Алешин, А.В. Колесников

Сибирский государственный индустриальный университет

ОЦЕНКА ТЕХНИЧЕСКОГО СОСТОЯНИЯ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ ОБЩЕСТВЕННОГО ЗДАНИЯ В ГОРОДЕ НОВОКУЗНЕЦКЕ С УЧЕТОМ ТРЕБОВАНИЙ НОРМ СЕЙСМОСТОЙКОГО СТРОИТЕЛЬСТВА

Целью настоящей работы является анализ результатов расчета здания с учетом сейсмических воздействий, разработка мероприятий по усилению строительных конструкций, анализ результатов расчета усиленного здания.

Расчет здания с учетом сейсмических воздействий

Расчет здания выполняли с использованием программного комплекса SCAD.7.31.R. Общественное здание рассматривали как пространственную систему. Формирование расчетной схемы пространственной модели здания основывалось на материалах обследования технического состояния конструкций и изучении проектной документации, включая типовые серии проектных решений узлов и элементов.

Расчетная схема существующего здания представляет собой систему конечных элементов, состоящую из отдельных стержней (колонны, ригеля междуэтажного перекрытия, балки покрытия, ребра плит покрытия, элементы ферм) и вертикальных дисков балокстенок (кирпичные перегородки, наружные стены). В используемой расчетной схеме были учтены дверные и оконные проемы, а также учтены конструктивные решения узлов примыкания ригелей к колоннам, решетки ферм к поясам и т.д. в виде жестких или шарнирных закреплений. Закрепление элементов здания с фундаментом в расчетной схеме обеспечено связями и представляет собой неподатливое соединение.

Расчетная схема здания, сформированная в расчетно-программном комплексе SCAD, представлена на рис. 1.

- В расчетной схеме учтены следующие нагрузки:
- постоянная вес конструкций и конструктивных элементов;
- временная длительная эксплуатационная, принятая согласно действующих норм;
- кратковременная снеговая, ветровая, технологическая на перекрытия по СП N_2

20.12330.2011 «Нагрузки и воздействия» (Актуализированная редакция СНиП 2.01.07 – 85* [1]);

динамическая – сейсмическая.

Расчет здания проводили согласно СП № 20.12330.2011 «Нагрузки и воздействия» на «основное сочетание нагрузок», когда учитывали первые три вида нагрузок, и «особое сочетание нагрузок», когда учитывали все нагрузки. Воздействие динамической составляющей рассматривали в продольном, поперечном и вертикальном направлениях отдельно друг от друга с распределением инерционных масс по элементам.

При расчете пространственной модели здания приняты следующие допущения:

- одни типоразмеры (осевые) фактических линейных размеров элементов;
- вертикальные элементы (колонны, перегородки) в расчетных схемах строго вертикальные;
- в узлах опирания балок покрытия на колонны с отклонением от разбивочных осей в пределах допустимого эксцентриситет опирания не учитывали;
- узел сопряжения железобетонного ригеля с колонной абсолютно жесткий;
- закрепление вертикальных конечных элементов (колонн) с основанием жесткое;
- плиты покрытия и плиты перекрытия по балкам покрытия и междуэтажным ригелям заменены стержневыми элементами с равномерным шагом, соответствующим ширине плит:
- ребра двух плит, расположенных рядом друг с другом, рассматривали как один конечный элемент, соответствующий жесткостным характеристикам обоих ребер;
- ослабления стен и перегородок дверными и оконными проемами учитывали уменьшением жесткостных характеристик конечных элементов стен.

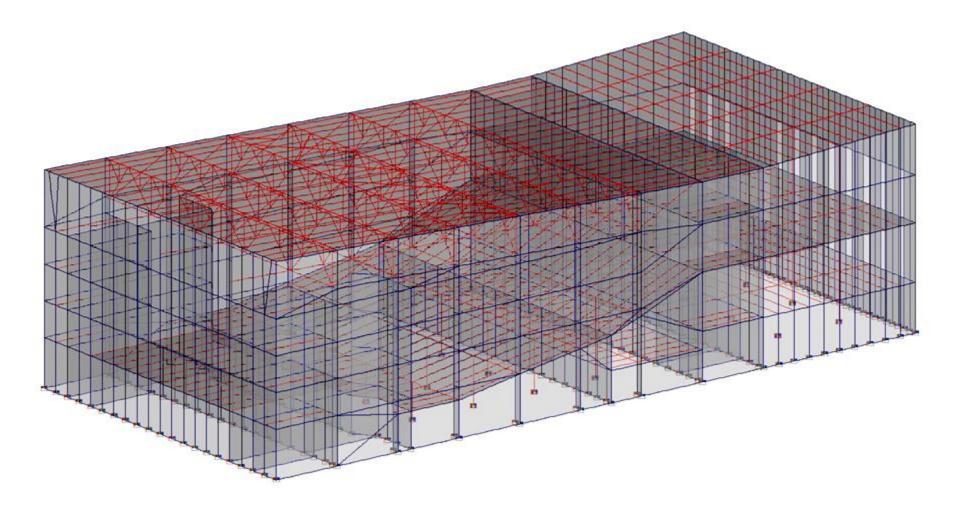


Рис. 1. Расчетная схема SCAD (вид по оси E)

Анализ результатов расчета здания с учетом сейсмических воздействий

В результате статического и динамического расчетов пространственной схемы здания были получены следующие результаты:

- перемещение в продольном направлении здания достигает 27 мм при сочетании постоянной, временной, снеговой нагрузки и сейсмического воздействия в продольном направлении:
- в поперечном направлении максимальные перемещения наблюдаются в продольных наружных стенах в районе зоны опирания фермы по оси 7 и достигают 67 мм.

Несмотря на то, что горизонтальные перемещения от сейсмических воздействий отдельных конструкций и здания в целом в действующих нормах не рассматриваются, предельные перемещения от статических нагрузок не должны превышать h/500, что для данного здания составляет 27 мм (где h – высота здания).

Полученные при расчете значения горизонтальных перемещений от сейсмических воздействий превышают предельные нормативные перемещения при статической нагрузке в 2,5 раза.

Нетрадиционная конструкция вертикальных связей в виде отдельно стоящих наклонных распорок, соединяющих верхний узел первой фермы и нижний узел последующей, при сейсмическом воздействии вдоль здания приводит к выходу из плоскости ее верхних и нижних поясов в разные стороны, при этом закручивается ферма. Выход верхних поясов из плоскости ферм достигает 30 мм.

Общий вид деформации здания имеет сложную форму, наблюдаются перемещения узлов элементов, составляющих каркас здания. В целом происходит закручивание системы элементов относительно вертикальной оси, расположенной между осями здания 3 и 4 (рис. 2, 3), при этом в элементах конструкций возникают напряжения различных знаков; нормальные напряжения в элементах кирпичной кладки достигают в сжатых зонах 12,7 и 27,0 кг/см² в горизонтальном и вертикальном направлениях [2].

Согласно СНиП II-22 – 81 «Каменные и армокаменные конструкции» расчетное сопротивление сжатию кладки из кирпича марки 75 при использовании раствора марки 50 составляет 13 кг/см². Возникающие в кладке напряжения от сейсмических воздействий превышают предельные нормативные значения в два раза. Однако необходимо отметить, что такие напряжения наблюдаются в основном в пилястрах наружных продольных стен в местах

опирания ферм. Присоединение элемента фермы к опоре кирпичной кладки пилястры по расчетной схеме точечное, этим и объясняются большие напряжения, которые фактически перераспределяются через опорную подушку.

Опасения вызывает нижняя часть пилястр: ее внутренняя часть испытывает растяжение. По расчету растягивающие напряжения достигают 6 кг/см², что больше напряжений предельного состояния кирпичной кладки на растяжение в 7,5 раз. Таким образом, для восприятия растягивающих напряжений необходимо усиление кирпичной кладки пилястр.

В результате расчета были получены поля нормальных напряжений, возникающих в конструкциях здания. Для примера на рис. 4 представлены поля напряжений от воздействия сейсмической нагрузки в поперечной стене по оси 4 и наружной стене по оси E.

Необходимо отметить, что на участках стен, соответствующих участкам в расчетной схеме, где наблюдаются растягивающие напряжения, при визуальном осмотре были обнаружены трещины: в цокольной части здания и в двух верхних участках поперечной стены по оси 4. Можно предположить возможность появления трещин от растягивающих напряжений от воздействия сейсмической нагрузки в поперечной стене по оси 4.

В простенках между оконными проемами по наружной стене по оси *I* возникают растягивающие напряжения от воздействия поперечной сейсмической нагрузки. Основной причиной таких явлений являются сдвиговые деформации верхней части здания относительно нижней в процессе сейсмических колебаний.

В пилястрах актового зала растягивающие напряжения появляются в уровне перекрытия подвального помещения под зрительным залом вследствие отсутствия жесткого диска покрытия.

Проектные решения по усилению строительных конструкций

Необходимо провести следующие конструктивные мероприятия, которые обеспечат эксплуатационные качества, соответствующие нормативному уровню технического состояния как отдельных строительных конструкций, так и здания в целом (рис. 2, 3):

- создание металлического пояса и жесткого железобетонного диска в уровне перекрытия второго этажа;
- создание металлических поясов в поперечных стенах по осям *3*, *4* и *11* в уровне перекрытия третьего этажа;

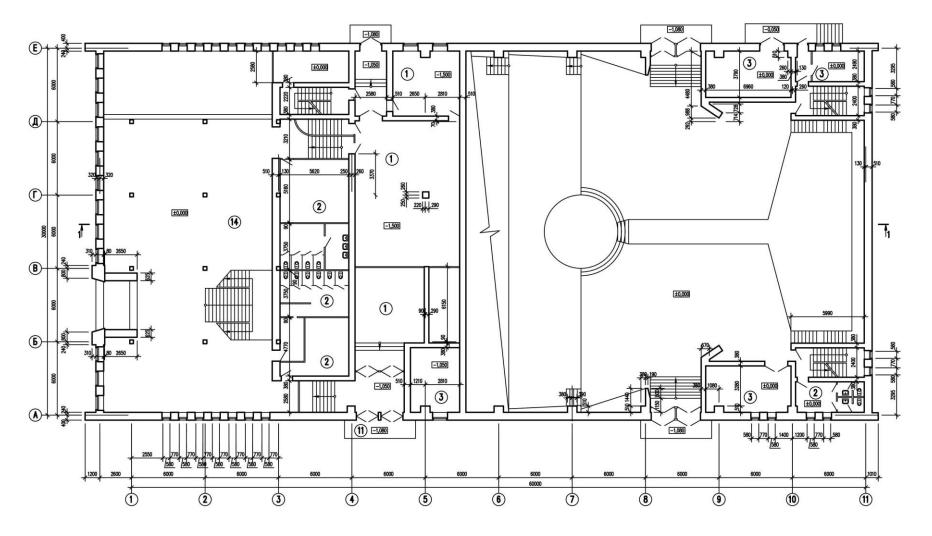


Рис. 2. План первого этажа

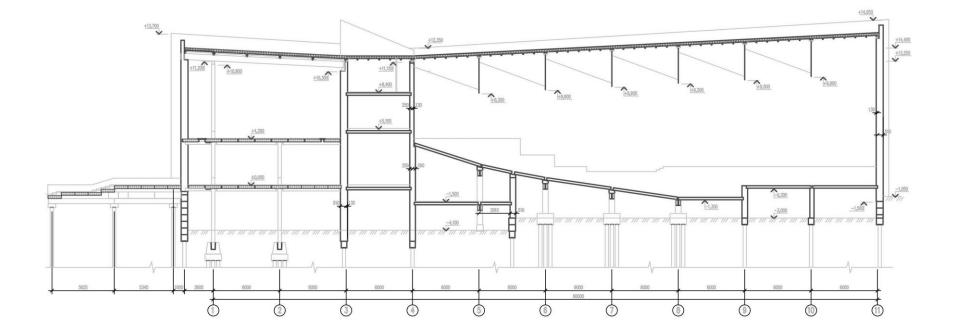


Рис. 3. Разрез 1 – 1

- создание жесткого железобетонного диска между осями 3 и 4 в уровне перекрытия третьего этажа:
- раскрепление нижних поясов стропильных ферм из их плоскости;
- устройство металлического пояса по периметру здания и жесткого железобетонного диска в уровне покрытия здания;
- усиление пилястр кирпичных стен актового зала;
- усиление простенков кирпичных стен между осями 1 и 3 по оси A и между осями 1 и 4 по оси E и простенков по оси 1.

Создание металлического пояса и жесткого железобетонного диска в уровне перекрытия второго этажа осуществляется следующим образом: по периметру с наружной стороны здания устанавливается металлический швеллер № 24, с внутренней стороны кирпичной стены на перекрытие укладывается равнополочный уголок 100×100×10 мм, который соединяется со швеллером болтами диам. 24 мм с шагом 1000 мм. Такая конструкция представляет собой металлический пояс кирпичной стены по периметру здания. По плитам перекрытия укладывается сетка 200×200 мм из арматуры диам. 12 мм класса А400, которая приваривается к уголку металлического пояса по всей длине. Слой бетона класса В20 толщиной 80 мм укладывается по перекрытию непрерывным бетонированием. Для обеспечения совместной работы железобетонного диска с плитами перекрытия устанавливаются арматурные анкера, замоноличенные в пустоты плит, из стержней арматуры диам. 12 мм класса А400 с шагом 2×2 м.

Создание горизонтальных металлических поясов в стенах по осям 3, 4 и 11 в уровне перекрытия третьего этажа производится аналогично: швеллера по оси 3 располагаются на поверхности кирпичной стены со стороны оси 2, швеллер по оси 4 расположен со стороны оси 5, уголки укладываются на перекрытие между осями 3 и 4, диаметр болтов, стягивающих швеллер и уголки, принимается равным 24 мм, болты устанавливаются с шагом 1000 мм.

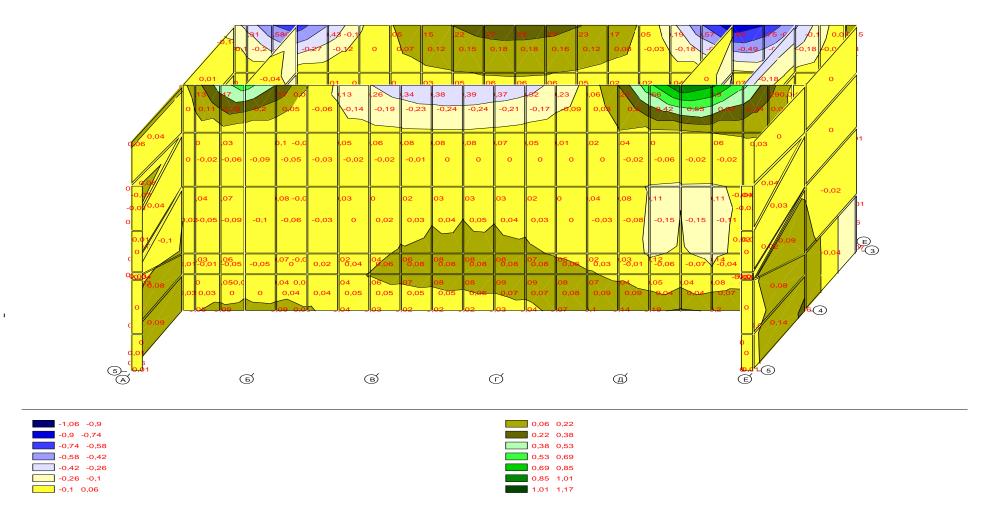
Создание жесткого железобетонного диска между осями 3 и 4 в уровне перекрытия третьего этажа выполняется аналогично: укладывается сетка 200×200 мм из арматуры диам. 12 мм класса A400, приваренная к уголкам; укладывается слой бетона класса B20 толщиной 80 мм. Совместная работа диска и плит покрытия обеспечивается установкой арматурных анкеров, установленных в пустоты плит. Производится раскрепление нижних поясов стропильных ферм из их плоскости в узлах нижнего

пояса закрепленных к швеллерам металлических поясов по осям 4 и к уголку по оси 11.

Устройство металлического пояса по периметру здания и жесткого железобетонного диска в уровне покрытия здания по конструктивному решению аналогично усилению перекрытия. Конструктивное решение усиления пилястр актового зала заключается в том, что по внешним углам устраивается обрамление уголком $100\times100\times10$ мм, представляющее собой металлическую обойму пилястр и воспринимающую растягивающие напряжения в конструкциях от сейсмических воздействий.

Усиление простенков между оконными проемами по осям I-3 оси A, осям I-4 оси E, по оси I выполняется в виде металлической обоймы из четырех внешних уголков $100\times100\times10$ мм, соединенных между собой металлическими планками.

Расчет здания с учетом выполненного усиления строительных конструкций


Согласно разработанным конструктивным решениям усиления элементов здания в расчетную схему были введены дополнительные конечные элементы в виде:

- плит для создания жестких дисков в уровнях перекрытий второго, третьего этажей и покрытия;
- стержней для создания распорок по нижним поясам ферм.

Анализ результатов расчета усиленного здания

В результате статического и динамического расчетов пространственной схемы усиленного здания получены следующие результаты:

- максимальные перемещения в продольном направлении здания наблюдаются в уровне верха торцевой стены по оси 11 в средней ее части и достигают 7 мм при «особом сочетании нагрузок», что в четыре раза меньше значений перемещений до усиления;
- максимальные перемещения в поперечном направлении наблюдаются в продольных стенах в районе зоны опирания фермы по оси 7 и достигают 9 мм, что также меньше перемещений до усиления в 7,5 раза;
- устройство распорок по нижним поясам ферм, а также раскрепление их между железобетонным диском в осях 3-4 и металлическим поясом в наружной кирпичной стене по оси 11 препятствуют ее закручиванию из плоскости при действии сейсмических усилий;
- исчезли растягивающие напряжения в опасных сечениях кирпичной кладки.

NX (Кг/см2). Загружение 6

Рис. 4. Поля нормальных напряжений в поперечной стене по оси 4 и наружной стене по оси E, возникающие от воздействия сейсмической нагрузки

Выводы. Наибольшие горизонтальные перемещения верха наружных кирпичных стен возникают от сейсмических воздействий, максимальные перемещения от воздействий в поперечном направлении здания достигают 67 мм в продольной стене по оси 7, что превышает нормативные перемещения при статической нагрузке в 2,5 раза. Наибольшие сжимающие напряжения от сейсмических воздействий в кирпичной кладке возникают в вертикальном направлении и достигают 27 кг/см², что превышает нормативные значения расчетного сопротивления кирпичной кладки на сжатие (13 кг/см²) в два раза. При работе здания в режиме сейсмических воздействий в отдельных сечениях кирпичной кладки (пилястры, простенки и др.) возникают значительные (до 6 кг/см²) растягивающие напряжения, что больше расчетного сопротивления кирпичной кладки по неперевязанному сечению на растяжение (0.8 кг/см^2) в 7,5 раза. Это свидетельствует о возможном появлении трещин и разрушении конструкций. С целью обеспечения эксплуатационной надежности отдельных конструкций и здания в целом от сейсмических воздействий необходимо проектную документацию дополнить следующими мероприятими по обеспечению сейсмостойкости здания:

- выполнить металлические пояса в уровне перекрытия первого этажа и покрытия по периметру здания в уровне перекрытия второго этажа по длине поперечных кирпичных стен;
- создать железобетонные диски перекрытий первого и второго этажей и железобетонный диск покрытия;

- обеспечить закрепление нижних поясов стропильных ферм к железобетонному диску перекрытия второго этажа и к металлическому поясу по оси 11;
- выполнить усиление простенков и пилястр металлическими обоймами. Расчет усиленного здания на «основное» и «особое сочетание нагрузок» с учетом реализованных вышеперечисленных мероприятий показал, что все расчетные параметры здания (горизонтальные перемещения и нормальные напряжения) кирпичной кладки не превышают предельных нормативных значений, что свидетельствует об эффективности принятых конструктивных мероприятий по обеспечению сейсмостойкости здания.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- **1.** СП 20.13330 2011. Нагрузки и воздействия. Актуал. редакция СН и П 2.01.07 85*. М.: 2011. 80 с.
- 2. Алешин Н.Н., Алешин Д.Н., Коле с ников А.В. Обследование технического состояния строительных конструкций общественного здания в городе Новокузнецке с учетом требований норм сейсмостойкого строительства // Вестник СибГИУ. 2015. № 1 (11). С. 67 76.

© 2015 г. Н.Н. Алешин, Д.Н. Алешин, А.В. Колесников Поступила 24 февраля 2015 г.