УДК 621.791.048:669.046.587

Н.Ф. Якушевич, Н.А. Козырев, А.А. Проводова, Р.Е. Крюков, У.И. Липатова Сибирский государственный индустриальный университет

ИСПОЛЬЗОВАНИЕ КОВШЕВОГО СТАЛЕПЛАВИЛЬНОГО ШЛАКА ПРИ ИЗГОТОВЛЕНИИ СВАРОЧНОГО КЕРАМИЧЕСКОГО ФЛЮСА*

При сварке под флюсом широкое распространение получило использование керамических флюсов в виде крупки, получаемой при смешении шихты определенного состава и связующего с последующей грануляцией и прокалкой при соответствующих температурах. Керамические флюсы применяют преимущественно при наплавке, поскольку они позволяют легировать наплавляемый металл в широких пределах [1, 2]. Керамические флюсы отличаются высокой основностью, обеспечиваемой введением в них оксидов кальция, магния и их производных. Одним из недостатков керамических флюсов является использование в качестве компонентов первородных материалов, которые требуют предварительной подготовки, в частности, помола. В этой связи представляет интерес изучение возможности использования саморассыпающегося высокоосновного ковшевого шлака, получаемого при производстве стали рельсовых марок.

В настоящей работе экспериментально изучали возможность смешения саморассыпающегося высокоосновного ковшевого шлака с жидким стеклом. В опытах использовали ковшевой шлак, получаемый при производстве стали рельсовых марок и жидкое натриевое стекло (ГОСТ 13078-81, силикатный модуль 3,1-3,5). Химический состав ковшевого шлака, изготовленного флюса и шлаковой корки приведен в табл. 1.

Изучали возможность получения требуемой консистенции массы для приготовления флюса и сварочно-технологические свойства готового материала. Получение сформированной массы возможно при соотношении количества шлак и жидкое стекло 60-70 и 30-40 % соответственно, оптимальным признано соотношение 67 и 33 %.

Технология изготовления флюса включала в себя смешение шлака с жидким стеклом, выдержку в течение суток при комнатной температуре, сушку в печи в течение 4 ч при температуре $300\,^{\circ}$ С. После охлаждения флюс дробили и рассеивали на фракцию 0,4-2,5 мм.

Наплавку проводили на пластины из стали $09\Gamma2C$ размером 250×500 мм толщиной 16 мм сварочным трактором ASAW-1250 с использованием сварочной проволоки марки Cв-08A диам. 4 мм при различных режимах. Высота слоя флюса составляла 35-45 мм. Режимы наплавки изменяли в следующих пределах: сварочный ток 600-690 A; напряжение дуги 27-30 B; скорость сварки 21-30 м/ч.

В ходе исследования подобран оптимальный режим наплавки, обеспечивший получение во время сварки под флюсом стабильное горение дуги и хорошее качество шва (без наплывов, подрезов и пор).

Проведенный рентгенофазовый анализ шлака и флюса (табл. 2) на установке Дрон-2.0 показал, что основными минеральными составляющими шлака и флюса являются γCa_2SiO_2 , алюминаты кальция $Ca_{12}Al_14O_{33}$, силикат кальция $Ca_6[SiO_4][Si_3O_{10}]$. Термогравиметрическому анализу подвергли образцы флюса и полученной сварочной корки (рис. 1, табл. 3).

Нагрев материалов осуществляли на воздухе со скоростью 10 °С/мин до 1500 °С, после этого делали выдержку (5 мин) для полного проплавления и охлаждали со скоростью 10 °С/мин до окончания кристаллизации, фиксируемой на кривых ΔH и Δm . Исходная масса навески фракции 50 мкм составляла 50 мг.

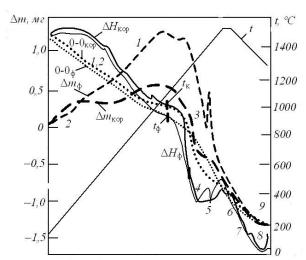
В начале нагрева наблюдается увеличение массы (Δm) материала: расчетные увеличения за счет окисления железа металлического до FeO $+\Delta m_{\phi}\approx 0.1$ мг (0.2 %) и $+\Delta m_{\text{кор}}\approx 0.35$ мг (0.7 %), за счет частичного окисления сульфидной серы (FeS, CaS) до сульфатной при 100 % окислении серы $+\Delta m_{\phi}\approx 1.3$ мг (2.6 %) и $+\Delta m_{\text{кор}}\approx 1.8$ мг (3.6 %); фактическое увеличение массы флюса составило 0.7 мг (1.4 %), корки -1.3 мг (2.6 %).

 $^{^*}$ Работа выполнена в СибГИУ в рамках проектной части Государственного задания Минобрнауки РФ № 11.1531.2014/к.

При испытании, исследовании и измерении было использовано оборудование Центра коллективного пользования «Материаловедение» СибГИУ.

Таблица 1

	Содержание, %, компонента											
Материал	CaO	SiO ₂	Al ₂ O ₃	MgO	CaF ₂	Na ₂ O	K ₂ O	FeO	Fe _{общ}	C	P_2O_5	S
Ковшевой шлак	36,20	40,10	4,50	8,00	4,70	4,00	0,16	0,1	0,68	0,54	0,05	0,58
Флюс	35,85	37,43	4,60	8,80	4,85	3,35	0,16	2,0	0,34	0,33	0,05	0,66
Шлаковая корка	34,93	35,85	4,67	8,79	5,23	4,04	0,16	0,2	1,24	0,32	0,05	0,92


Эти процессы сопровождаются экзотермическим эффектом, сравнимым по величине с эндотермическим эффектом плавления материалов (2) (площади между кривыми ΔH и кривой 0-0).

Плавление в обоих случаях начинается при нагреве до 1200 °C (точки $t_{\rm o}$, $t_{\rm k}$) и заканчивается при 1450 °C. Образование легкоплавких жидких эвтектик при 1200 °C приводит к образованию на поверхности твердых частиц жидких пленок. Процесс плавления сопровождается потерей массы материала флюса 1 мг (2 %) и корки 2 мг (4 %), что обусловлено интенсивной дегазацией за счет диссоциации оксидов железа, серы, окисления углерода, уменьшения растворимости азота. Удаление газов через образовавшиеся пленки вязкого расплава с разрывом пузырей и выбросами мелкодисперсного материала приводит к режиму «кипения» и вибрации, что фиксируется на гравиметрических кривых в виде пиков практически в течение всего времени плавления. На кривых ΔH видно, что процесс плавления протекает в две ступени: на первом этапе при температурах 1200 - 1300 °C плавятся легкоплавкие эвтектики (4), на втором (1300 - 1460 °C) более тугоплавкие соединения (5).

При охлаждении также можно выделить три этапа: кристаллизация тугоплавких соеди-

нений (1460 - 1400 °C), кристаллизация вдоль пограничных кривых (1400 - 1300 °C), эвтектическая кристаллизация (1300 - 1260 °C).

Полученные температуры плавления исследуемого материала соответствуют требуемым для успешного осуществления процесса сварки температурным интервалам плавления сварочных флюсов.

Термогравиметрический анализ флюса и сварочной корки (кривые 0-0 разделяют области экзотермических и эндотермических процессов):

—, — — и ···· — ΔH , Δm и кривые 0-0 флюса; — —, — — — ···· — ΔH , Δm и кривые 0-0 корки

Таблица 2

Результаты рентгенофазового анализа исследуемых материалов

Мате-	Содержание					
риал	много	присутствуют	немного	примеси		
Шлак	γCa ₂ SiO ₄	$Ca_6[SiO_4][Si_3O_{10}]$	Mao CaE Ca Maisi O l	Na ₂ CaSiO ₄		
		$Ca_{12}Al_{14}O_{33}$	$MgO, CaF_2, Ca_2Mg[Si_2O_7]$	Рентгеноаморфное вещество		
Флюс	γCa ₂ SiO ₄	$Ca_{6}[SiO_{4}][Si_{3}O_{10}] \ Ca_{12}Al_{14}O_{33} \ $ Рентгеноаморфное вещество	MgO, CaF ₂ , Ca ₂ Mg[Si ₂ O ₇]	Примеси		

Таблица 3

<i>α</i> υ	1 .	1	,	`
Сравнительный те	омографический а	нализ флюса и ко	орки (числитель	и знаменатель)

	Процесс	+ °C	4 °C	± A 200 3 5 E	
Номер	Название	t _H , °C	t_{κ} , °C	$\pm \Delta m$, ΜΓ	
1	Окисление Fe до FeO, (Fe, Ca)S до MeSO ₄	20/20	960/970	+1,2/+0,6	
2	Адсорбция N ₂ , O ₂ , H ₂ O	20/20	250/350	+0,2/+0,3	
3	Дегазация	1000/1100	1300/1300	-1,0/-1,3	
4	Плавление эвтектик	1210/1320	1200/1280	-1,0/-0,8	
5	Плавление сложных оксидов	1300/1250	1420/1450	-0,7/-0,4	
6	Кристаллизация тугоплавких соединений	1500/1480	1380/1460	-0,4/-0,2	
7	Двухфазная кристаллизация	1380/1310	1380/1310	-0,2/-0,2	
8	Кристаллизация эвтектик	1310/1300	1310/1300	_	

Выводы. Изучено поведение в процессе нагрева и охлаждения получаемых при производстве стали рельсовых марок саморассыпающихся высокоосновных ковшевых шлаков, изготовленных из них сварочных флюсов и образовавшихся в процессе сварки шлаковых корок. Установлено, что плавление начинается при 1210 °C и протекает в два этапа. Эвтектические смеси проплавляются при 1210 – 1300 °C, тугоплавкие соединения – при 1300 – 1450 °C. Кристаллизация шлаков при охлаждении протекает в обратной последовательности и заканчивается при 1300 °C. Показана принципиальная возможность использования ковшевого шлака сталеплавильного производства для изготовления флюса. В результате экспериментов подобрано оптимальное соотношение количеств ковшевого шлака и жидкого стекла для изготовления керамического флюса, а также режимы сварки, обеспечивающие получение во время сварки под флюсом стабильное горение дуги и хорошее качество шва. Разработана технология изготовления керамическо-

го флюса при соотношении ковшевого шлака и жидкого стекла 67 и 33 %. Подобран оптимальный режим наплавки для флюса: ток сварки 680 А; напряжение дуги 27 В, скорость сварки 30 м/ч.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Сварочные материалы для дуговой сварки. Справочное пособие. Т. 1. Защитные газы и сварочные флюсы / Б.П. Конищев, С.А. Курланов, Н.Н. Потапов и др. / Под общ. ред. Н.Н. Потапова М.: Машиностроение, 1989. 544 с.
- **2.** Подгаецкий В.В., Люборец И.И. Сварочные флюсы. Учебник. Киев: Техника, 1984. 167 с.

© 2015 г. Н.Ф. Якушевич, Н.А. Козырев, А.А. Проводова, Р.Е. Крюков, У.И. Липатова Поступила 23 апреля 2015 г.