УДК 622.831

В.В. Басов, С.В. Риб

Сибирский государственный индустриальный университет

ПОДБОР ЭКВИВАЛЕНТНОГО МАТЕРИАЛА ДЛЯ ФИЗИЧЕСКОГО МОДЕЛИРОВАНИЯ ГЕОМЕХАНИЧЕСКИХ ПРОЦЕССОВ В ОКРЕСТНОСТИ ПОДГОТОВИТЕЛЬНЫХ ВЫРАБОТОК УГОЛЬНЫХ ШАХТ

В настоящее время на угольных шахтах при высокой скорости подвигания длинных очистных забоев возникают связанные с быстроменяющейся геомеханической ситуацией проблемы обеспечения безопасности горных работ. При столбовой системе разработки рост нагрузки на очистные забои сдерживается неудовлетворительным состоянием выемочных выработок, которые охраняются угольными целиками, состоянием пересечений, сопряжений, а также вспомогательных наклонных выработок в пределах выемочного столба.

Факторами, сдерживающими скорость проведения выработок, являются простои забоев, происходящие при обрушении пород кровли и боков выработки, разрушении угольных целиков и т.д. [1, 2]. Для снижения негативного влияния этих факторов необходимо проведение исследований и обоснование соответствующих рекомендаций.

Наиболее эффективным источником получения достоверной информации о геомеханических процессах в углепородном массиве являются шахтные эксперименты. Однако их проведение связано с высокими материальными и трудовыми затратами, поэтому в практике научных исследований широко применяются математическое и физическое моделирование. По результатам моделирования может быть решена задача оценки геомеханического состояния горных пород в окрестности подготовительных выработок на всех стадиях их эксплуатации.

Для математического моделирования напряженно-деформированного состояния (НДС) массива пород среди численных методов широко применяется метод конечных элементов [3-5].

Для исследования геомеханических процессов в сложных горно-геологических условиях применяются методы физического моделирования, а именно, методы моделирования на эквивалентных материалах [6-8].

Для решения производственных задач оценки НДС массива предлагается сочетание физического и компьютерного моделирования [9].

Возможны следующие варианты [10]: I — после проведения компьютерного моделирования определяются граничные условия для сечений протяженных выработок на наиболее проблемных участках, а затем эти условия закладываются в специальное программное обеспечение с целью управления силовыми элементами стенда для физического моделирования; 2 — тестирование компьютерной модели по результатам физического моделирования.

Для сокращения временных и производственных затрат при проведении исследований был разработан методический подход, включающий физическое моделирование на эквивалентных материалах и тестирование компьютерного программного обеспечения для прогноза геомеханических параметров в широком диапазоне горно-геологических и горнотехнических условий. Отличительной особенностью предлагаемого подхода является настройка входных параметров математической модели по результатам физического моделирования.

В настоящей работе приведены результаты исследований по первому этапу физического моделирования, то есть по подбору эквивалентного материала.

Целью работы является адаптация методики подбора состава смеси и определения прочностных характеристик эквивалентного материала, подобного свойствам осадочных горных пород.

Задачи исследования следующие:

- I определить физико-механические свойства реальных горных пород (угля, аргиллита, алевролита, алевропесчаника и песчаника);
- 2 в соответствии с теорией подобия [6] определить физико-механические свойства эквивалентного материала для указанных пород;
- 3 изготовить композитный материал, включающий в определенных пропорциях песок и парафин;
- 4 разработать и реализовать программу исследований характеристик эквивалентного материала;

5 — провести оценку соответствия физикомеханических свойств эквивалентного материала и реальных пород.

Подбор эквивалентного материала осуществляли для угля, аргиллита, алевролита, алевропесчаника и песчаника, физикомеханические свойства которых (предел прочности на сжатие (σ) и плотность (ρ) приведены ниже:

Порода	σ, МПа	ρ, $κΓ/M3$
Песчаник	80,0	2600
Алевропесчаник	50,0	2100
Алевролит	40,0	2500
Аргиллит	30,0	1900
Уголь	8,2	1200

Прочностные характеристики эквивалентного для каждой породы материала рассчитаны по формулам, предложенным Г.Н. Кузнецовым [6]:

$$\sigma_{\text{\tiny II-LC}} = \left(R_{\text{\tiny c}}\right)_{\text{\tiny M}} = \frac{l}{L} \frac{\gamma_{\text{\tiny M}}}{\gamma_{\text{\tiny H}}} \left(R_{\text{\tiny c}}\right)_{\text{\tiny H}}, \tag{1}$$

где $\sigma_{_{\Pi^{\text{H,C}}}} = \left(R_{_{\text{C}}}\right)_{_{\text{M}}}$ — предел прочности эквивалентного материала при сжатии; $\left(R_{_{\text{C}}}\right)_{_{\text{H}}}$ — предел прочности натурных образцов породы при сжатии; $\frac{l}{L}$ — линейный масштаб модели; $\gamma_{_{\text{M}}}$ — плотность материала; $\gamma_{_{\text{H}}}$ — плотность породы.

Плотность материала модели рассчитывали по формуле:

$$\gamma_{\rm M} = 0.6 \gamma_{\rm H}. \tag{2}$$

При подборе эквивалентных материалов были выбраны две составляющие – песок и парафин. Использовали кварцевый песок с диаметром зерен 0,30 – 0,16 мм. Парафин при-

меняли технический CTO 00148636-004 - 2007.

Для изготовления эквивалентного материала осуществляли смешивание песка и парафина, процентное содержание смеси (по массе) находилось в диапазоне 95,0-98,5% и 1,5-5,0% соответственно. Для плавления парафина и нагрева песка применяли электрошкаф сушильный типа СНОЛ-3,5. Смесь нагревали до температуры 130 ± 3 °C и многократно перемешивали для обеспечения более однородного состава получаемого материала. Готовую смесь укладывали в заготовленные образцы цилиндрической формы высотой 50 мм и диам. 50 мм по Γ OCT 21153.2-84 (рис. 1).

Для каждого варианта сочетания содержания песка и парафина было изготовлено по 5 образцов.

Испытания образцов на одноосное сжатие осуществляли на гидравлическом прессе «Азимут» БП-29 (рис. 2). Показания манометра заносили в журнал для последующей обработки данных.

По результатам испытаний для соблюдения критерия подобия определяли предел прочности при одноосном сжатии (σ_{cm}) образцов.

В соответствии с результатами расчета и проведенных испытаний, предусмотренных программой, была подобрана рецептура состава смеси и определены пределы прочности эквивалентного материала при сжатии, соответствующие углю, аргиллиту, алевролиту, алевропесчанику и песчанику (см. таблицу).

На рис. 3 представлена гистограмма распределения пределов прочности образцов эквивалентного материала при сжатии в зависимости от процентного содержания парафина в песчано-парафиновой смеси для перечисленных горных пород.

По результатам физического моделирования установлено, что отношение пределов прочности реальных пород и эквивалентного материала соответствует формуле (1).

Рис. 1. Образцы цилиндрической формы с песчано-парафиновой смесью: a — смесь в специально заготовленной цилиндрической форме, δ — готовый образец

Рис. 2. Схема испытания образцов при сжатии: a – исходный образец; δ , ϵ – появление и развитие первой трещины в образце; ϵ – конечное разрушение образца

Выводы. Полученные результаты испытаний эквивалентного материала предлагается использовать при физическом моделировании для выявления закономерностей и зависимостей деформации горных пород в окрестности сопряжений горных выработок и угольных целиков. Предлагаемый подход позволит повысить надежность прогноза напряженнодеформированного состояния пород после настройки математической модели по результатам физического моделирования.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Заславский Ю.З. Исследование проявлений горного давления в капитальных выработках глубоких шахт Донецкого бассейна. М.: Недра, 1966. 180 с.
- **2.** Домрачев А.Н., Риб С.В., Никитина А.М. Адаптация методов оценки риска обрушения подземных горных выработок к

- условиям шахт юга Кузбасса В кн.: Известия Тульского государственного университета. Науки о Земле. Вып. 4. Тула: изд. ТулГУ, 2016. С. 81 89.
- **3.** Моделирование проявлений горного давления / Г.Н. Кузнецов, М.Н. Будько, Ю.И. Васильев и др.. Л.: Недра, 1968. 279 с.
- **4.** Методы и средства решения задач горной механики / Г.Н. Кузнецов, К.А. Ардашев, Н.А. Филатов и др. М.: Недра, 1987. 248 с.
- **5.** Моделирование в геомеханике / Ф.П. Глушихин, Г.Н. Кузнецов, М.Ф. Шклярский и др. М.: Недра, 1991. 240 с.
- **6.** Риб С.В., Басов В.В. Методика подготовки исходных данных для решения двумерных задач численного моделирования неоднородных угольных целиков // Вестник СибГИУ. 2014. № 4. С. 11 13.

Предел прочности образцов эквивалентного материала при сжатии

Порода	Состав эквивалент	Состав эквивалентной смеси, % (по массе)		σ _{ст} , МПа	
	песок	парафин	расчетный	лабораторный	
Уголь	98,52	1,48	0,05	0,10	
Аргиллит	98,00	2,00	0,18	0,15	
Алевролит	97,00	3,00	0,24	0,24	
Алевропесчаник	96,50	3,50	0,30	0,32	
Песчаник	96,00	4,00	0,48	0,46	

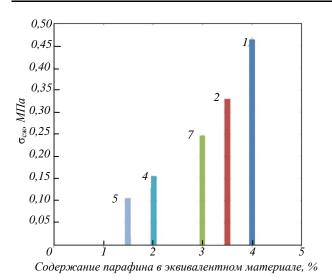


Рис. 3. Гистограмма распределения пределов прочности образов при сжатии: I – песчаник; 2 – алевропесчаник; 3 – аргиллит; 4 – уголь; 6 – алевролит.

7. Риб С.В. Волошин В.А., Фрянов В.Н., Максимов А.А., Борзых Д.М., Никитина А.М. Численное моделирование методом конечных элементов напряжённо-деформированного состояния углепородного массива при переходе

- очистным забоем передовой выработки // Горный информационно-аналитический бюллетень. 2015. № 3. С. 414 422.
- 8. Р и б С.В. Закономерности распределения напряжений в неоднородных угольных целиках В кн.: Нетрадиционные и интенсивные технологии разработки месторождений полезных ископаемых: сб. науч. ст. Новокузнецк: изд. СибГИУ. 2008. С. 148 153.
- 9. Неверов А.А., Неверов С.А., В асичев С.Ю. Сравнительный анализ численного и физического моделирования напряженно-деформированного состояния массива горных пород // Вестник КузГТУ. 2013. № 4 (98). С. 14 22.
- 10. З у е в Б.Ю., К о р ш у н о в Г.И., П а л ьц е в А.И. Физическое моделирование как составная часть геомеханического мониторинга в сложных горно-геологических условиях // Горный информационно-аналитический бюллетень. 2010. № 5. С. 29 – 36.

© 2016 г. В.В. Басов, С.В. Риб Поступила 01 декабря 2016 г.