МЕТАЛЛУРГИЯ И МАТЕРИАЛОВЕДЕНИЕ

УДК 669.162.1:549.08:544.3.03

А.А. Пермяков, Н.И. Кувшинникова, А.Н. Калиногорский

Сибирский государственный индустриальный университет

ТЕХНОЛОГО-МИНЕРАЛОГИЧЕСКИЕ ИССЛЕДОВАНИЯ ПРИ ПРОФИЛАКТИРОВАНИИ ОБОЖЖЕННЫМ ИЗВЕСТНЯКОМ ЖЕЛЕЗОРУДНОГО КОНЦЕНТРАТА

Железорудный концентрат, получаемый мокрой магнитной сепарацией (ММС), содержит обычно 8 – 10 % влаги. Такая влажность негативно сказывается на конечных свойствах концентрата: при транспортировке является балластом, в зимнее время приводит к смерзанию концентрата в прочный монолит, затрудняя его разгрузку потребителем. Для решения проблемы уменьшения влажности товарного железорудного концентрата и предотвращения его смерзания Абагурским филиалом ОАО «Евразруда» с 2008 г. реализуется проект «Получение нового товарного продукта» (так называемого профилактированного концентрата) путем введения в состав концентрата ММС обожженного на агломерационной машине известняка [1 – 3]. При профилактировании происходит адсорбция воды на поверхности извести, этот процесс широко применяется в промышленности при сушке тонкодисперсных материалов [4]. Такой способ флюсования концентрата непосредственно на обогатительной фабрике облегчает транспортировку и выгрузку его из железнодорожных вагонов в зимних условиях [5], улучшает его технологические характеристики.

Однако при внедрении технологии получения профилактированого концентрата у обогатителей возникает ряд вопросов: необходимо знать механизм и кинетику протекания физико-химических и минералообразующих процессов, их влияние на качественно-технологические характеристики получаемого продукта. В лаборатории экологии и комплексного исследования минеральных отходов ЦКП «Материаловедение» СибГИУ были выполнены технолого-минералогические исследования железорудного концентрата до и после профилактирования обожженным известняком, а также природного и обожженного известняка. Особое внимание уделено изучению процессов минералообразования и физико-химических процессов при профилактировании. Представительные пробы концентрата, дробленого и

обожженного известняка, концентрата, профилактированного с добавкой 6, 8, 10, 12 или 14 % обожженного известняка, были детально изучены методами химического, рентгенофазового, дифференциально-тер-мического и технолого-минералогического анализов.

Макроскопический анализ известняков, отобранных в карьере и ДОФ Гурьевского филиала и рудном дворе Абагурского филиала, показал, что текстура известняка неяснослоистая, пятнисто-слоистая, пятнисто-вкрапленная, прожилковая, брекчиевая. Кальцит представлен двумя генерациями: мелкий тонкокристаллический кальцит I генерации (<0,2 мм) и переотложенный прожилковый крупнокристаллический кальцит II генерации (>5 мм).

Мелкокристаллический кальцит I является первичным в известняке. Он образует изометрично-таблитчатые зерна серого и темносерого цвета, в интерстициях которых располагаются тонко- и скрытокристаллические углистые, силикатные, реже пиритовые и магнетитовые включения: зерна магнетита и пирита — изометричные; углистые и хлоритовые частицы — чешуйчатые; частицы пироксена — удлиненные, столбчатые. Наночастицы углистого вещества, содержащиеся в кальците I, положительно влияют на процесс обжига, способствуют полной диссоциации кальцита во всем объеме обжигаемого обломка.

Кальцит II образует крупнокристаллические прожилки в кальците I, содержание его в известняках составляет 20 – 35 %. Облик кристаллов крупнокристаллического кальцита – изометрично-таблитчатый белого, голубоватобелого или дымчато-серого цвета. Крупные кристаллы кальцита II встречаются в прожилках, пятнистых скоплениях и в форме полос различной мощности.

Химический состав исследованного известняка: 54,76 % CaO; 0,46 % MgO; 0,21 % Fe₂O₃; 2,14 % SiO₂; 0,073 % S; 41,75 % ППП. Содержание CaO в дробленом известняке уменьшается с понижением класса крупности. Химичес-

Таблица 1

Химический состав обожженного известняка агломерационного производства
по классам крупности

Компонент	Содержание, % (объмн.), компонентов по классам крупности							
KOMHOHEHI	+10	+5	+2	+1	+0,5	+0,2	+0,1	-0,1
CaO	66,80	79,00	85,20	87,10	84,00	82,00	77,80	71,50
$\mathrm{CaO}_{\mathrm{akt}}$	31,10	59,10	79,10	84,00	76,60	71,60	66,60	56,00
MgO	0,94	1,03	1,03	0,75	1,01	0,64	1,09	1,37
Fe_2O_3	1,36	1,07	0,45	0,51	1,15	0,97	1,47	3,18
${ m SiO}_2$	1,57	2,06	2,26	2,78	4,40	5,12	5,73	8,21
S	0,08	0,10	0,12	0,11	0,18	0,24	0,35	0,35
П.П.П.	28,63	16,14	10,68	8,34	6,66	7,87	9,97	9,06
Выход фракций	14,0	42,8	11,3	22,2	2,8	3,2	1,6	2,1

кий анализ также показал, что среди микрокомпонентов в кальците содержатся изоморфные примеси бария (0,15~%) и стронция (0,1~%), а также в незначительных количествах марганец, никель, медь, свинец, бериллий, кобальт. Минеральный состав известняков: 94,5~%кальцита $CaCO_3$; 0,78~% магнезита $MgCO_3$; 0,07~% гетита FeOOH; 0,11~% пирита FeS_2 ; 1,1~% пироксена $(Mg,Fe,Ca)_2Si_2O_6$; 0,5~% кварца SiO_2 ; 0,94~% графита C.

В процессе обжига известняка на агломерационной ленте диссоциация кальцита I протекает почти полностью. Однако крупнокристаллический кальцит II не подвергается диссоциации полностью даже в очень мелких обломках. Микроскопическими исследованиями установлено, что обожженные обломки известняка, как правило, имеют зональное строение: внешняя зона представлена известью (СаОакт); слой с переменным содержанием извести (СаОакт) и кальцита (СаСО3); ядро (особенно в крупных кусках) представлено кальцитом. Толщина каждой зоны, а также их количество зависят от размера кусков известняка, степени обжига, ширины зоны горения и скорости ее перемещения. Крупные обломки известняка вследствие низкой теплопроводности и высокой скрытой теплоты диссоциации оказываются в наихудших условиях для обжига, поэтому содержат значительное количество недожога, то есть имеют мощное кальцитовое ядро.

Химический состав обожженного известняка агломерационного производства по классам крупности представлен в табл. 1. (здесь и далее плюс означает больше приведенного размера, минус — меньше приведенного размера). Содержание извести в обожженном известняке колеблется в пределах 55-75 %. Около 30-35 % CaO находится в недиссоциированном кальците, который неравномерно распределяется по классам крупности.

Известно [6], что абсолютно чистых, не содержащих примесей веществ не существует. Одни примеси могут вводиться специально для улучшения определенных свойств, другие, являясь нежелательными добавками, попадают в материал в процессе его получения. Процесс обжига известняка проводят при температурах. не допускающих образования жидкой фазы [7]. Однако примеси, содержащиеся в известняке, могут при обжиге вступать в реакции с оксидом кальция и при отсутствии жидкой фазы. Так, в процессе обжига известняка на агломерационной ленте образуются кальциевые минералы, которые в процессе профилактирования концентрата способны переводить воду из жидкого в твердое кристаллогидратное состояние.

Минеральный состав обожженного известняка по классам крупности представлен в табл. 2.

В процессе профилактирования влажный концентрат смешивается с горячим обожженным известняком, при этом влажность смеси понижается на 0.25-1.05% относительно влажности исходного концентрата. В результате реакций гидратации минералов происходят разогрев концентрата и интенсивное испарение влаги (0.4-2.5% влажности полученной смеси относительно исходной влажности), при этом почти все минералы обожженного известняка участвуют в процессе профилактирования.

Таблица 2

Минеральный состав обожженного известняка
по классам крупности

Минерал	Химиче-	Содержание, % (объемн.), фракций							
	ское соеди- нение	+10	+5	+2	+1	+0,5	+0,2	+0,1	-0,1
Кальцит	CaCO ₃	54,94	30,69	10,97	4,60	9,70	14,20	14,40	28,20
Периклаз	MgO	0,30	0,40	0,50	0,70	0,50	0,70	0,80	0,80
Известь	CaO	31,00	58,50	78,60	82,30	76,00	71,50	67,00	48,40
Ольдгамит	CaS	0,10	0,20	0,30	0,30	0,40	0,70	0,70	1,80
Кальциоферрит	$Ca_{2}Fe_{2}O_{5}$	0,30	0,30	0,40	0,60	0,70	0,90	1,10	1,70
Кальциооливин	(Ca,Mg)SiO ₄	12,30	8,60	8,40	10,50	11,70	11,00	14,30	18,10
Кокс	C	>1	1,00	≤1	≤1	≤1	≤1	≤1	>1

Известь в процессе профилактирования очень активно взаимодействует с гидратной и парообразной водой, образуется портландит, прирост массы составляет около 32 % [8]. В результате минералогического анализа установлено, что в процессе профилактирования железорудного концентрата кроме портландита образуются брусит, гипс, гидрокальцит, гидросиликаты кальция и другие гидроминералы, переводящие часть влаги концентрата из жидкого в кристаллическое состояние. При микроскопических исследованиях в профилактированном концентрате обнаружен гидрокальцит, что достаточно четко подтверждено результатами дифференциально-термического исследования.

Динамика перехода воды в кристаллическое состояние зависит, главным образом, от химического состава обожженного известняка, содержания в нем активной извести, частично от содержания кальцита и кальциооливина, а также от массы обожженного известняка, использованного на профилактирование концентрата. Рассчитать массу (W) воды, которая переходит в процессе минералообразования из жидкого в кристаллическое состояние, можно по формуле

$$W = C_{\text{\tiny MИH}} m_{\text{\tiny H3B}} \frac{n M_{\text{\tiny H_2O}}}{M_{\text{\tiny MИH}}} \, ,$$

где $m_{\rm изв}$ — масса обожженного известняка, добавленного при профилактировании концентрата, кг; $C_{\rm мин}$ — содержание минерала в массе обожженного известняка (в расчетах используется среднее содержание минеральных компонентов извести по классам крупности); $M_{\rm H2O}/M_{\rm мин}$ — отношение молекулярной массы воды к молекулярной массе минерала обожженного известняка при гидратации; n — число молекул воды, которое приходится на 1 молекулу минерала при гидратации (n = 6 для ольдгамита, n = 1,3 для кальциоферрита).

При гидратации минералов в обожженном известняке с образованием портландита, гидрокальцита и др. влажность концентрата снижается на 0.8 - 3.5 %. Расчетное количество влаги, которая переходит в результате гидратации из жидкого в твердое состояние, представлено в табл. 3.

Таблица 3

Расчетное количество влаги, которая переходит в результате гидратации из жидкого в твердое состояние

Минерал	Формула	W , кг, при $m_{{\scriptscriptstyle ext{ iny H3B}}}$, кг/т концентрата					
	тортули	80	100	120	140		
Портладит	$Ca(OH)_2$	17,44	21,80	26,16	30,52		
Гидрокальцит	CaCO ₃ ·H ₂ O	3,02	3,58	4,54	5,29		
Гипс	CaSO ₄ ·2H ₂ O	0,36	0,45	0,54	0,63		
Кальциоферриты	$CaFe_2O_4\cdot nH_2O$	0,05	0,06	0,07	0,09		
Кальциоливин	Ca ₂ SiO ₄ ·5H ₂ O	1,67	2,10	2,51	2,93		

Гидратация обожженного известняка проходит полнее при равномерном распределении извести в объеме концентрата. При этом экзотермический эффект в процессе гидратации способствует локальному разогреву в области контакта гидратируемого минерала и влаги концентрата. Удельная поверхность контакта обратно пропорциональна крупности фракции обожженного известняка. Так, профилактирующая способность обожженного известняка фракции —8 мм проявляется более интенсивно: этому способствует низкое содержание недожога в мелких фракциях и более высокое содержание извести (СаО_{акт}). Полученные в процессе исследований результаты согласуются с данными работы [9].

В зависимости от условий профилактирования остаточная влажность концентрата изменяется в пределах 2,5 – 6,8 %. Эта зависимость контролируемо определяется погодновременными условиями и количеством обожженного известняка, вносимого на профилактирование концентрата ММС. Известно [10], что влажность железорудного концентрата в зимнее время должна быть не более 4 %. Именно при такой влажности не происходит смерзания концентрата при его транспортировке. Влажность концентрата в летнее время должна быть около 7 %, чтобы предотвратить пыление концентрата во время транспортировки, а также облегчить его выгрузку.

Выводы. В результате проведенных технолого-минералогических исследований установлено, что в процессе профилактирования влажного железорудного концентрата с горячим обожженным известняком удаление влаги происходит не только за счет испарения при смешивании, но и за счет минералообразования, протекающего при гидратации минералов обожженного известняка с влагой концентрата. Установлено, что почти все минералы в той или иной степени участвуют в переводе воды из жидкого состояния в твердое. Показана зависимость профилактирующей способности обожженного известняка от крупности и от содержания СаОакт в извести. В зависимости от массы (от 4 до 14 %) добавленного обожженного известняка процесс пофилактирования железорудного концентрата ММС сопровождается его обезвоживанием: на 0,25 - 1,05 % при смешивании горячего обожженного известняка и концентрата MMC; на 0.8 - 3.5 % при гидратации минералов в обожженном известняке с образованием портландита, гидрокальцита и др.; на 0,4 – 2,5 % при испарении. С учетом погодных и сезонных условий остаточная влажность товарного концентрата в процессе профилактирования может технологически регулируемо составлять 6,8 – 2,5 %

(уровень, не допускающий его смерзания в морозных условиях).

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Пермяков А.А., Кувшинникова Н.И., Калиногорский А.Н., Бутов П.Ч., Ганженко И.М., Осокин Н.А. Технолого-минералогические исследования кинетики процессов при профилактировании концентрата, производимого на Абагурском филиале ОАО «ЕВРАЗРУДА». В кн.: Сб. научн. тр. «Металлургия: технологии, управление, инновации, качество». Новокузнецк: изд. СибГИУ, 2013. С. 12 17.
- 2. Патент № 2451757 РФ. Способ обработки железорудного концентрата и линия для обработки железорудного концентрата / Байбородов Н.И., Писарев Л.Н., Килин В.И., Сочнев А.В., Мартынов Н.А., Любичев В.П., Гачегов О.Н.; ОАО «Евразруда». Заявл. 31.12.2009; опубл. 27.05.2012.
- 3. Берсенев И.С., Клейн В.И., Зарщиков П.И., Осокин Н.А., Щеглов В.Н. Производство извести на агломерационной машине МАК-90 // Сталь. 2013. № 4. С. 2 – 5.
- 4. Школлер М.Б., Казимиров С.А., Темлянцев М.В., Базегский А.Е. Кондиционирование угольных отходов с высоким содержанием влаги и золы // Кокс и химия. 2015. № 12. С. 32 37.
- **5.** Базилевич С.В., Вегман Е.Ф. Агломерация. М.: Металлургия, 1967. 367 с.
- 6. Сарычев К.Ю., Мясникова В.И., Коновалов С.В., Комисарова И.А., Пискаленко В.В. Оценка адсорбционной активности примесей на границах зерен по бинарным диаграммам состояния // Изв. вуз. Черная металлургия. 2012. № 10. С. 49 51.
- 7. Ю н г В.Н. Основы технологии вяжущих веществ. М.: Дарственное издательство литературы по строительным материалам, 1951. 549 с.
- 8. Бойнтон Р.С. Химия и технология извести. М.: Издательство литературы по строительству, 1972. 240 с.
- 9. X р и с т о ф о р о в В.П. Оптимизация расхода извести при производстве агломерата в условиях ОАО «Уральская сталь» // Наука и производства Урала. 2015. № 11. С. 16 19.
- **10.** К у л и б и н В.А. Подготовка руд к плавке. М.: Металлургиздат, 1959. 518 с.

© 2016 г. А.А. Пермяков, Н.И. Кувшинникова А.Н. Калиногорский Поступила 08 ноября 2016 г.