УДК 669.017:620.197

$\it Л.A.$ Бокиев 1 , И.Н. $\it \Gamma$ аниев 2 , А.Х. $\it X$ акимов 2 , Х.Х. $\it A$ зимов 2 1 Институт химии им. В.И. Никитина АН Республики Таджикистан 2 Таджикский технический университет им. М.С. Осими

ВЛИЯНИЕ МАГНИЯ НА АНОДНОЕ ПОВЕДЕНИЕ АЛЮМИНИЕВОГО СПЛАВА АЖ5К10 В СРЕДЕ ЭЛЕКТРОЛИТА NaCl

Введение

В последние годы интерес к созданию новых конструкционных материалов, обладающих повышенными эксплуатационными характеристиками по сравнению с традиционными материалами, возрастает. Именно поэтому разработка и изучение свойств новых алюминиевых сплавов с участием малоизученных легирующих и модифицирующих добавок, устойчивых в агрессивных средах, является весьма актуальной задачей [1, 2].

Примеси железа и кремния оказывают существенное влияние на качество алюминия, с увеличением их количества значительно ухудшается коррозионная стойкость, уменьшается электропроводность и пластичность, повышается прочность металла [2-4].

Электродный потенциал сплавов системы Al-Fe при изменении содержания железа меняется незначительно, поскольку потенциал фазы $FeAl_3$ составляет $-0,4 \div -0,5$ B, а алюминия -0,8 B. Разность потенциалов (0,4 B) между алюминием (матрицей) и частицами фазы $FeAl_3$ снижает коррозионную стойкость сплавов. Влияние фазы $FeAl_3$ достаточно велико, потому что железо (несколько сотых долей процента), входящее в состав твердого раствора, сегрегирует по границам зерен и субзерен и может привести к межкристаллитной коррозии. Дополнительные добавки железа к сплавам системы Al-Fe образуют дисперсные частицы $FeAl_3$, которые меняют характер коррозии от межкристаллитной до питтинговой [2-4].

Как известно, некоторая часть первичного алюминия, извлекаемого из электролизеров (алюминий-сырец), содержит значительное количество таких примесей, как железо и кремний. При работе они переходят в расплав алюминия непосредственно из сырья (глинозема) и стальной оснастки. Такой металл не находит широкого использования, кроме как для раскисления и дегазации стали. Разработка новых сплавов на основе некондиционного алюминия представляет определенный практический интерес, так как позволяет превратить такой металл в нужный и полезный для общества продукт.

Материалы и методика исследования

Сплавы для коррозионно-электрохимических исследований получали в шахтной печи сопротивления типа СШОЛ при температуре 750 °C путем добавления в расплав алюминия, содержащего 5 % Fe и 10 % Si (здесь и далее по массе) металлического магния, завернутого в алюминиевую фольгу. Сплав алюминия с 5 % Fe извлекали непосредственно из электролизной ванны Таджикской алюминиевой компании (ГУП «ТАлКо»), затем подвергали легированию кремнием для улучшения технологических свойств. Там же в Центральной заводской лаборатории проводили химический анализ сплавов на содержание железа, кремния и магния. Из полученных сплавов отливали в графитовую изложницу стержни (диам. 8 и длиной 140 мм) для электрохимических исследований. Рабочей поверхностью служил торец электрода. Нерабочую часть образцов изолировали смолой (смесь 50 % канифоли и 50 % парафина). Перед погружением образца в рабочий раствор его торцевую часть зачищали наждачной бумагой, полировали, обезжиривали, тщательно промывали спиртом и затем погружали в раствор электролита NaCl. Температуру раствора в ячейке поддерживали постоянной 20 °C с помощью термостата МЛШ-8.

Исследования электрохимических свойств тройных сплавов проводили по методике, описанной в работах [5 — 15]. Электрохимические испытания образцов проводили потенциостатическим методом в потенциодинамическом режиме на потенциостате ПИ-50-1.1 со скоростью развертки потенциала 2 мВ/с в среде электролита NaCl. Электродом сравнения служил хлоридсеребряный, вспомогательным — платиновый.

В качестве примера на рис. 1 представлена полная поляризационная диаграмма для исходного сплава АЖ5К10 (рис. 1, a) и сплава, содержащего 1,0 % Mg (рис. 1, δ) в среде электролита (3 % NaCl). Образцы потенцио динамически

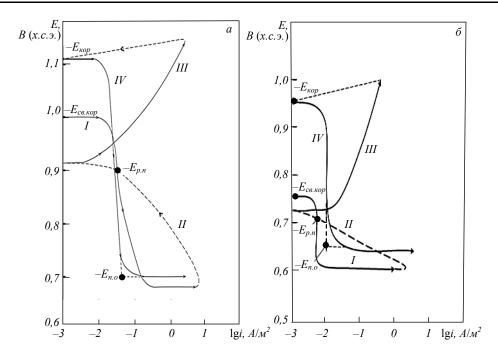


Рис. 1. Полная поляризационная кривая (при скорости развертки потенциала 2 мВ/с) сплава АЖ5К10 (a) и сплава АЖ5К10 (δ), легированного 1 % Mg в среде электролита 3 % NaCl

поляризовали в положительном направлении от потенциала, установившегося при погружении, до резкого возрастания тока в результате питтингообразования (рис. 1, кривая І). Затем образцы поляризовали в обратном направлении (рис. 1, кривая II) и по пересечению кривых I и II или по изгибу на кривой II определяли величину потенциала репассивации ($E_{\rm p.n}$). Далее шли в катодную область до значения потенциала –1,2 В для удаления оксидных пленок с поверхности электрода (рис. 1, кривая III) путем подщелачивания электродной поверхности. Наконец, образцы поляризовали вновь в положительном направлении (рис. 1, кривая IV) и по анодным кривым определяли основные электрохимические параметры процесса коррозии сплавов.

По полученным таким образом поляризационным кривым определяли основные электрохимические характеристики сплавов: потенциал питтингообразования ($E_{\text{п.о}}$), потенциал репассивации ($E_{\text{р.п}}$), потенциал и ток коррозии ($E_{\text{кор}}$ и $i_{\text{кор}}$). Расчет тока коррозии как основной электрохимической характеристики процесса коррозии проводили по катодной кривой с учетом тафелевской наклонной $B_{\text{к}}=0.12\,$ В, с учетом того, что в нейтральных средах процесс питтинговой коррозии алюминия и его сплавов контролируется катодной реакцией ионизации кислорода. Скорость коррозии, в свою очередь, является функцией тока коррозии, находимой по формуле:

$$K = i_{\text{kop}} \kappa$$
,

где $\kappa = 0.335 \, \Gamma/(A \cdot 4)$ для алюминия [4].

Экспериментальные результаты и их обсуждение

Результаты коррозионно-электрохимических исследований сплава АЖ5К10 с магнием в среде электролита NaCl представлены на рис. 2 – 5 и в таблице. Исследования показывают, что добавки магния в пределах 0,01 – 1,00 % способствуют смещению потенциала свободной коррозии в положительную область (рис. 2). При этом, чем больше добавки легирующего компонента (магния), тем положительнее потенциал свободной коррозии. Последний при переходе от среды электролита 0,03 % NaCl к среде электролита 3,00 % NaCl становится более отрицательным независимо от количества легирующей добавки (магния) в сплаве АЖ5К10.

В таблице обобщены коррозионно-электрохимические характеристики алюминиевого сплава АЖ5К10 в среде электролита NaCl различной концентрации. Как видно, с ростом содержания магния в исходном сплаве АЖ5К10 потенциалы коррозии, питтингообразования и репассивации смещаются в положительную область значений вследствие формирования устойчивой оксидной пленки на поверхности электрода.

Скорость коррозии сплавов, содержащих 0.01 - 1.00 % Mg, в 1.5 - 2.0 раза меньше, чем у исходного алюминиевого сплава АЖ5К10. Добав-

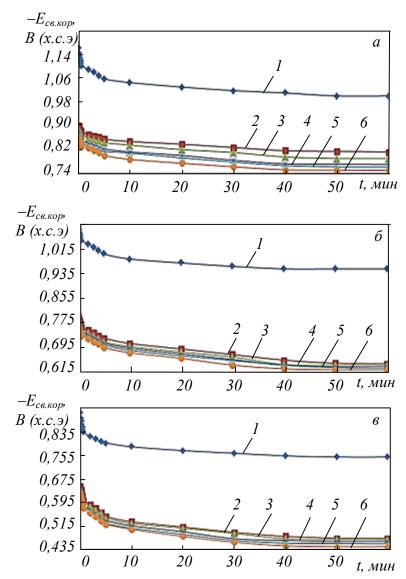


Рис. 2. Временная зависимость потенциала (х.с.э.) свободной коррозии ($-E_{\text{св.кор}}$, В) сплава АЖ5К10 (I) и сплава с содержанием 0,01 % (2), 0,05 % (3), 0,10 % (4), 0,50 % (5), 1,00 % (6) магния в среде электролита 0,03, 0,30 и 3,00 % NaCl ($a-\epsilon$) (здесь и на рис. 3 обозначения такие же)

ление магния в сплав АЖ5К10 способствует снижению скорости анодной коррозии, о чем свидетельствует смещение в положительную область анодных ветвей патенциодинамических кривых легированных сплавов (рис. 3).

Видно, что анодные кривые, относящиеся к легированным сплавам, располагаются левее кривой исходного сплава АЖ5К10, то есть скорость анодной коррозии у них несколько меньше, чем у исходного сплава АЖ5К10 во всех исследованных средах (рис. 3).

Применение алюминиевых сплавов как конструкционных материалов во многом обусловлено их стойкостью против коррозии, а как анодных материалов — отрицательным рабочим потенциалом по отношению к железу и его сплавам.

Сплавы алюминия относятся к материалам с большой химической активностью, которые

легко вступают в соединение с кислородом. В результате такого процесса на их поверхности мгновенно образуются тонкие оксидные пленки, толщина которых в естественных условиях достигает 0.01-0.02 мкм и может быть увеличена путем химического или анодного оксидирования до 5 или 50 мкм соответственно [16].

Коррозионная стойкость алюминия и его сплавов в различных агрессивных средах во многом зависит от стойкости в этих средах оксидной пленки, а также от химического состава сплава, вида термической обработки поверхности детали. Известно, что на коррозионную стойкость алюминиево-кремниевых сплавов отрицательно влияют добавки железа, никеля, олова, свинца и других примесей, образующих различные фазы [17].

Коррозионная стойкость таких сплавов определяется не только химическим составом, но и

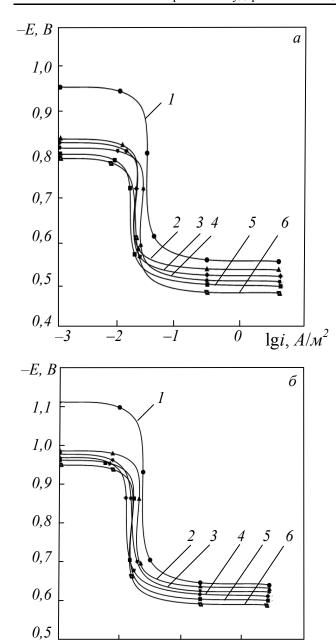


Рис. 3. Анодные ветви потенциодинамических кривых (при скорости развертки потенциала 2 мВ/с) сплава АЖ5К10, содержащего магний, в среде электролита 0,03 % (а) и 3,00 % (б) NaCl

-3

характером кристаллизации указанных фаз, определяющих их структуру, то есть формой их выделения. Как известно, модификацией (измельчением) двойной и тройной эвтектик в структуре сплава можно значительно изменить как механические свойства, так и коррозионную стойкость.

Повышение качества алюминиевых протекторов неразрывно связано с разработкой новых марок литейных проекторных сплавов и прогрессивных технологических процессов плавки и литья, обеспечивающих повышение технико-экономических показателей производства и

применение литых протекторов. Качество протекторов зависит также от химического состава и структуры литого металла [16, 17].

Положительное действие магния на анодные свойства сплава АЖ5К10 не может объясняться только увеличением истинной поверхности анода или уплотнением защитного фазового слоя оксидов малорастворимыми продуктами окисления. Стойкость сплавов алюминия с железом также зависит от изменения структуры при модифицировании и легировании, то есть от величины кристаллов фаз в структуре сплавов. Как известно, модификаторами структуры сплава могут служить металлы, имеющие малую межатомную связь и, следовательно, низкую температуру плавления, малую прочность и твердость. К таким металлам относятся и щелочноземельные металлы.

Из таблицы видно, что разность потенциалов коррозии исследованных сплавов ($-0.956 \div -1.110 \,\mathrm{B}$) в среде электролита 3 % NaCl и железа ($-0.420 \,\mathrm{B}$) составляет $0.600 - 0.700 \,\mathrm{B}$, что вполне обеспечивает надежную защиту стальных конструкций, таких как анодный протектор [16, 17].

Выводы. Установлено положительное влияние легирующих добавок магния на анодные характеристики и скорости коррозии сплава АЖ5К10 в среде электролита NaCl. Установленные закономерности могут использоваться при разработке состава новых композиций сплавов на основе низкосортного некондиционного алюминия для нужд технологии противокоррозионной зашиты.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Белецкий В.М., Кривов Г.А. Алюминиевые сплавы (состав, свойства, технология, применение) / Под ред. И.Н. Фридляндера. Киев: КОМИТЕХ, 2005. 365 с.
- **2.** Мондольфо Л.Ф. Структура и свойства алюминиевых сплавов. М.: Металлургия, 1979. 640 с.
- 3. Алюминиевые сплавы (свойства, обработка, применения). Справочник / Под ред. М.Е. Дриц, Л.Х. Райтбарг. М.: Металлургия, 1979. 679 с.
- **4.** Фрейман Л.И., Макаров В.А., Брыксин И.Е. Потенциостатические методы в коррозионных исследованиях и электрохимической защите. М.: Химия, 1972. 240 с.
- 5. Джайлоев Дж.Х., Ганиев И.Н., Амонов И.Т., Якубов У.Ш. Анодное поведение сплава Al + 2,18 % Fe, легированного стронцием в среде электролита NaCl // Вестник Сибирского государственного индустриального университета. 2019. № 1 (27). С. 42 46.

 $\lg i, A/m^2$

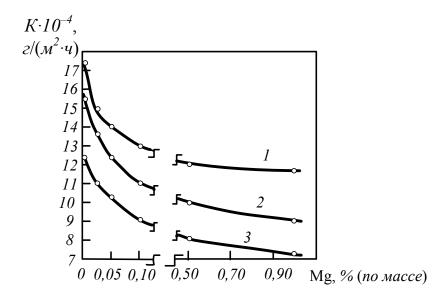


Рис. 4. Зависимость скорости коррозии сплава АЖ5К10 от содержания магния в среде электролита 0.03, 0.30 и 3.00 % NaCl (I-3)

- 6. Ганиев И.Н., Исмонов Р.Д., Одиназода Х.О., Сафаров А.М., Курбонова М.З. Влияние содержания галлия, индия и таллия на анодное поведение алюминиевого сплава АБ1 (Al + 1 % Ве) в нейтральной среде // Вестник Сибирского государственного индустриального университета. 2018. № 2 (24). С. 22 – 26.
- 7. Ганиев И.Н., Якубов У.Ш., Сангов М.М., Хакимов А.Х. Анодное поведение сплава АЖ5К10, модифицированного стронцием, в среде электролита NaCl // Вестник Сибирского государственного индустриального университета. 2017. № 4 (22). С. 57 – 62.
- 8. Ниёзов О.Х., Ганиев И.Н., Муллоева Н.М., Худойбердизода С.У. Потенциодинамическое исследование сплава ССу3, легированного кальцием в среде электролита NaCl // Вестник Сибирского государственного индустриального университета. 2018. № 1 (23). С. 36 – 40.

- 9. Ганиев И.Н., Муллоева Н.М., Ниезов О.Х., Эшов Б.Б., Ходжаев Ф.К. Влияние щелочноземельных металлов на анодное поведение свинца в нейтральной среде // Вестник Сибирского государственного индустриального университета. 2017. № 1 (19). С. 49 – 53.
- 10. Ганиев И.Н., Джайлоев Дж.Х., Амонов И.Т., Эсанов Н.Р. Влияние щелочноземельных металлов на анодное поведение сплава Al + + 2,18 % Fe в нейтральной среде // Вестник Сибирского государственного индустриального университета. 2017. № 3 (21). С. 40 44.
- 11. Якубов У.Ш., Ганиев И.Н., Сангов М.М. Электрохимическая коррозия сплава АЖ5К10, модифицированного барием, в среде электролита NaCl // Известия Санкт-Петербургского государственного технологического института (технического университета). 2018. № 43 (69). С. 21 25.

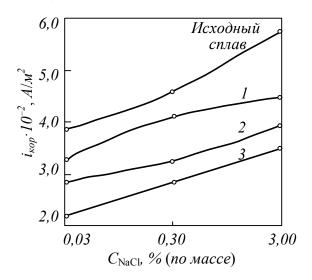


Рис. 5. Зависимость плотности тока коррозии сплава АЖ5К10, содержащего 0,01 % (1), 0,10 % (2) и 1,00 % (3) магния от концентрации NaCl

Коррозионно-электрохимические характеристики сплава АЖ5К10 с магнием в среде электролита NaCl

Электролит NaCl, % (по массе)	Содержание магния в сплаве, % (по массе)	Электрохимические потенциалы, В (х.с.э.)				Скорость коррозии	
		$-E_{ m cb.kop}$	$-E_{ m kop}$	$-E_{\pi.o}$	$-E_{\mathrm{p.n}}$	$i_{\text{kop}} \cdot 10^{-2}$, A/m ²	$K\cdot 10^{-3}$, $\Gamma/(M^2\cdot \Psi)$
0,03	_	0,750	0,994	0,645	0,738	3,7	12,39
	0,01	0,474	0,860	0,610	0,718	3,3	11,05
	0,05	0,470	0,853	0,590	0,710	3,1	10,38
	0,10	0,464	0,848	0,570	0,695	2,7	9,04
	0,50	0,455	0,840	0,560	0,680	2,4	8,04
	1,00	0,445	0,834	0,540	0,660	2,2	7,37
0,30	-	0,950	1,060	0,660	0,780	4,6	15,41
	0,01	0,644	0,880	0,640	0,756	4,1	13,73
	0,05	0,640	0,872	0,630	0,720	3,7	12,39
	0,10	0,635	0,866	0,610	0,700	3,3	11,05
	0,50	0,630	0,854	0,590	0,690	3,0	10,05
	1,00	0,625	0,850	0,580	0,670	2,7	9,04
3,00	_	1,000	1,110	0,700	0,900	5,8	19,43
	0,01	0,812	0,986	0,678	0,798	4,5	15,00
	0,05	0,790	0,980	0,670	0,778	4,2	14,07
	0,10	0,770	0,970	0,654	0,758	3,9	13,06
	0,50	0,762	0,962	0,650	0,738	3,6	12,06
	1,00	0,750	0,956	0,650	0,718	3,5	11,72

- 12. Якубов У.Ш., Ганиев И.Н., Сангов М.М., Ганиева Н.И. О коррозионном потенциале сплава АЖ5К10, модифицированного щелочноземельными металлами, в среде электролита NaCl // Вестник Магнитогорского государственного технического университета им. Г.И. Носова. 2018. Т. 16. № 3. С. 109 119.
- 13. Якубов У.Ш., Ганиев И.Н., Сангов М.М., Амини Р.Н. Влияние добавок кальция на коррозионно-электрохимическое поведение сплава АЖ5К10 в водных растворах NaCl // Вестник Южно-Уральского государственного университета. Серия: Металлургия. 2018. Т. 18. № 3. С. 5 15.
- 14. Ганиев И.Н., Аминбекова М.С., Эшов Б.Б., Якубов У.Ш., Муллоева Н.М. Анодное поведение свинцового сплава ССу3 с кадмием в среде электролита NaCl // Вестник Казанско-

- го технологического университета. 2019. Т. 22. № 1. С. 42 46.
- **15.** Азимов Х.Х., Ганиев И.Н., Амонов И.Т., Джураева М.Ш. Сравнительное исследование анодного поведения сплава АЖ2.18, модифицированного литием, бериллием и магнием, в среде электролита NaCl // Вестник Магнитогорского технического университета им. Г.И. Носова. 2017. Т. 15. № 3. С. 45 53.
- **16.** Строганов Г.Б., Ротенберг В.А., Гершман Г.Б. Сплавы алюминия с кремнием. М.: Металлургия, 1977. 272 с.
- **17.** Постников Н.С. Коррозионностойкие алюминиевые сплавы. М.: Металлургия, 1976. 301 с.

© 2019 г. Л.А. Бокиев, И.Н. Ганиев, $A.X.\ X$ акимов, $X.X.\ A$ зимов Поступила 7 октября 2019 г.