МЕТАЛЛИЧЕСКИЕ СТЕКЛА ИЗ ВЫСОКОЭНТРОПИЙНЫХ СПЛАВОВ: СВОЙСТВА, ОСОБЕННОСТИ ПОЛУЧЕНИЯ И ИСПОЛЬЗОВАНИЯ

Авторы

  • Чжан Пэй Школа материаловедения и инженерии, Шанхайский совместный инновационный центр передовых лазерных производственных технологий https://orcid.org/0000-0002-2342-5832
  • Юрий Федорович Иванов Институт сильноточной электроники СО РАН https://orcid.org/0000-0001-8022-7958
  • Александр Петрович Семин Сибирский государственный индустриальный университет https://orcid.org/0000-0002-3989-7420
  • Сергей Владимирович Боровский Сибирский государственный индустриальный университет
  • Виктор Евгеньевич Громов Сибирский государственный индустриальный университет https://orcid.org/0000-0002-5147-5343
  • Виталий Владиславович Шляров Сибирский государственный индустриальный университет https://orcid.org/0000-0001-8130-648X

DOI:

https://doi.org/10.57070/2304-4497-2024-2(48)-10-22

Ключевые слова:

металлические стекла, высокоэнтропийные сплавы, использование, свойства, спиннингование

Аннотация

Высокоэнтропийные сплавы (ВЭС) –это твердые растворы, содержащие пять или более основных элементов, находящихся в сплаве в равных или почти в равных пропорциях (ат. %). Концепция таких сплавов открывает новые пути для создания необычных металлических материалов с уникальными физическими и механическими свойствами, которые невозможно получить в известных сплавах, в составе которых обычно один основной элемент. В отдельную группу можно выделить металлические стекла (МС) на основе высокоэнтропийных сплавов (МС ВЭС). Металлические стекла –это материал, полученный резкой закалкой ВЭС из жидкого состояния и поэтому такие стекла имеют аморфную стеклоподобную структуру. Основными составляющими элементами МС ВЭС могут быть цирконий, медь, железо, никель, хром, иттрий, церий. Эти материалы весьма перспективны для применения в промышленности из-за их превосходных механических свойств, таких как высокая прочность (близка к теоретической прочности), износостойкость, твердость, исключительные магнитные свойства. Формирование, кристаллизация и кинетика этих материалов являются предметом пристального изучения. Металлические стекла ВЭС более устойчивы, по сравнению с обычными МС, за счет высокой конфигурационной энтропии. В настоящей работе представлен краткий обзор работ отечественных и зарубежных исследователей по различным аспектам металлических стекол. Показано, что изучение свойств МС ВЭС может обеспечить прорыв и новые подходы в формировании и изучении новых систем ВЭС, а также в возможности потенциального применения этих новых материалов.

Биографии авторов

Чжан Пэй, Школа материаловедения и инженерии, Шанхайский совместный инновационный центр передовых лазерных производственных технологий

доктор, профессор

Юрий Федорович Иванов, Институт сильноточной электроники СО РАН

д.ф.-м.н., профессор,главный научный сотрудник

Александр Петрович Семин, Сибирский государственный индустриальный университет

к.т.н., старший научный сотрудник, доцент кафедры инженерных конструкций, строительных технологий и материалов

Сергей Владимирович Боровский, Сибирский государственный индустриальный университет

научный сотрудник

Виктор Евгеньевич Громов, Сибирский государственный индустриальный университет

д.ф.-м.н., профессор, заведующий кафедрой естественнонаучных дисциплин им. профессора В.М. Финкеля

Виталий Владиславович Шляров, Сибирский государственный индустриальный университет

аспирант кафедры естественнонаучных дисциплин им. профессора В.М. Финкеля, научный сотрудник лаборатории электронной микроскопии и обработки изображений

Библиографические ссылки

Chen Yu., Dai Z.-W., Jiang J.-Z. High entropy metallic glasses: Glass formation, crystalliza-tion and properties. Journal of Alloys and Compounds. 2021;866:158852. https://doi.org/10.1016/j.jallcom.2021.158852

Рогачев А.С. Структура, стабильность и свойства высокоэнтропийных сплавов. Физика металл о виметалловедение.2020;121(8):807–841. https://doi.org/10.31857/S0015323020080094

Zhang M., Gong P., Li N., Zheng G., Deng L., Jin J., Li Q., Wang X. Oxidation behavior of a Ti16.7Zr16.7Hf16.7Cu16.7Ni16.7Be16.7 high-entropy bulk metallic glass. Materials Letters. 2019;236:135–138. https://doi.org/10.1016/j.matlet.2018.10.056

Gong P., Li F., Deng L., Wang X., Jin J. Re-search on nano-scratching behavior of TiZrHfBeCu(Ni) high entropy bulkmetallic glasses. Journal of Alloys and Compounds. 2020;817:153240. https://doi.org/10.1016/j.jallcom.2019.153240

Zhang L.T., Duan Y.J., Wada T., Kato H., Pelletier J.M., Crespo D., Pineda E., Qiao J.C. Dynamic mechanical relaxation behavior of Zr35Hf17.5Ti5.5Al12.5Co7.5Ni12Cu10 high entropy bulk metallic glass. Journal of Materi-als Science & Technology. 2021;83:248–255. https://doi.org/10.1016/j.jmst.2020.11.074

Li M., Guan H., Yang S., Ma X., Li Q. Minor Cr alloyed Fe–Co–Ni–P–B high entropy bulk metallicglass with excellent mechanical prop-erties. Materials Science and Engineering: A. 2021;805:140542. https://doi.org/10.1016/j.msea.2020.140542

Li N., Wu S., Ouyang D., Zhang J., Liu L. Fe-based metallic glass reinforced FeCoCrNiMn high entropy alloy through selective laser melt-ing. Journal of Alloys and Compounds. 2020;822:153695. https://doi.org/10.1016/j.jallcom.2020.153695

Pang C.M., Yuan C.C., Chen L., Xu H., Guo K., He J.C., Li Y., Wei M.S., Wang X.M., Huo J.T., Shen B.L. Effect of Yttrium addition on magne-tocaloric properties of Gd-Co-Al-Ho high entro-py metallic glasses. Journal of Non-Crystalline Solids. 2020;549:120354.https://doi.org/10.1016/j.jnoncrysol.2020.120354

Zhao Y., Zhao P., Li W., Kou S., Jiang J., Mao X., Yang Z. The microalloying effectof Ce on the mechanical properties of medium entropy bulk metallic glass composites. Crystals.2019;9(9):483. https://doi.org/10.3390/cryst9090483

Yang Y., Liu C.T. Size effect on stability of shear-band propagation in bulk metallic glass-es: an overview. Journal of Materials Science. 2012;47:55–67. https://doi.org/10.1007/s10853-011-5915-8

Rashidi R., Malekan M., Gholamipour R. Crystalli-zation kinetics of Cu47Zr47Al6 and (Cu47Zr47Al6)99Sn1 bulk metallic glasses. Jour-nal of Non-Crystalline Solids. 2018;498:272–280.https://doi.org/10.1016/j.jnoncrysol.2018.06.042

Shao L., Xue L., Wang Q., Ma K., Huang J., Shen B. Effects of Si addition on glass-forming ability and crystallization behavior of DyCoAl bulk metallic glass. Journal of Alloys and Compounds. 2021;874:159964.https://doi.org/10.1016/j.jallcom.2021.159964

Lu S., Sun S., Li K., Li H., Huang X., Tu G. The effect of Y addition on the crystallization behaviors of Zr-Cu-Ni-Al bulk metallic glass-es. Journal of Alloys and Compounds.2019;799:501–512. https://doi.org/10.1016/j.jallcom.2019.05.219

Rahvard M.M., Tamizifar M., Boutorabi S.M.A. The effect of Ag addition on the non-isothermal crystallization kinetics and fragility of Zr56Co28Al16 bulk metallic glass. Journal of Non-Crystalline Solids. 2018;481:74–84. https://doi.org/10.1016/j.jnoncrysol.2017.10.026

Sohrabi S., Gholamipour R. Effect of Nb minor addition on the crystallization kinetics of Zr-Cu-Al-Ni metallic glass. Journal of Non-Crystalline Solids.2021;560:120731.https://doi.org/10.1016/j.jnoncrysol.2021.120731

Liu H., Jiang Q., Huo J., Zhang Y., Yang W., Li X. Crystallization in additive manufacturing of metallic glasses: A review. Additive Manu-facturing. 2020;36:101568.https://doi.org/10.1016/j.addma.2020.101568

Pogatscher S., Leutenegger D., Schawe J.E.K., Maris P., SchäublinR., Uggowitzer P.J., Löf-fler J.F. Monotropic polymorphism in a glass-forming metallic alloy. Journal of Physics: Condensed Matter.2018;30:234002.https://doi.org/10.1088/1361-648X/aac054

Kumar A., Nayak S.K., Bijalwan P., Dutta Mo., Banerjee A., Laha T. Optimization of mechanical and corrosion properties of plasma sprayed low-chromium containing Fe-based amorphous/nanocrystalline composite coating. Surface and Coatings Technology.2019;370:255–268. https://doi.org/10.1016/j.surfcoat.2019.05.010

Schawe J.E.K., Pogatscher S., Löffler J.F. Thermodynamics of polymorphism in a bulk metallic glass: Heat capacity measurements by fast differential scanning calorimetry. Thermo-chimica Acta. 2020;685:178518.https://doi.org/10.1016/j.tca.2020.178518

Ketov S.V., Ivanov Yu.P., Şopu D., Louzguine-Luzgin D.V., Suryanarayana C., Rodin A.O., Schöberl T., Greer A.L., Eckert J. High-resolution transmission electron microscopy investigation of diffusion in metallic glass multilayer films. Materials Today Advances. 2019;1:100004. https://doi.org/10.1016/j.mtadv.2019.01.003

Li Z., Huang Z., Sun F., Li X., Ma J. Forming of metallic glasses: mechanisms and processes. Materials Today Advances. 2020;7:100077. https://doi.org/10.1016/j.mtadv.2020.100077

Hu Z., Lei X., Wang Y., Zhang K. Oxidation feature and diffusion mechanism of Zr-based metallic glasses near the glass transition point. Materials Research Express. 2018;5:036511. https://doi.org/10.1088/2053-1591/aab309

Liu B.B., Hu L., Wang Z.Y., Ye F. Viscosity, re-laxation and fragility of the Ca65Mg15Zn20 bulk metallic glass. Intermetallics. 2019;109:8–15.https://doi.org/10.1016/j.intermet.2019.03.002

He N., Song L., Xu W., Huo J., Wang J.-Q., Li R.-W. The evolution of relaxation modes during isothermal annealing and its influence on proper-ties of Fe-based metallic glass. Journal of Non-Crystalline Solids. 2019;509:95–98.https://doi.org/10.1016/j.jnoncrysol.2018.12.035

Louzguine-Luzgin D.V., Zadorozhnyy M.Yu., Ketov S.V., Jiang J., Golovin I.S., Aronin A.S. Influence of cyclic loading on the structure and double-stage structure relaxation behavior of a Zr-Cu-Fe-Al metallic glass. Materials Science and Engineering: A. 2019;742:526–531. https://doi.org/10.1016/j.msea.2018.11.031

Wang W.H. Dynamic relaxations and relaxa-tion-property relationships in metallic glasses. Progress in Materials Science. 2019;106:100561. https://doi.org/10.1016/j.pmatsci.2019.03.006

Das A., Derlet P.M., Liu C., Dufresne E.M., Maaß R. Stress breaks universal aging behav-ior in a metallic glass. Nature Communica-tions. 2019;10:5006.https://doi.org/10.1038/s41467-019-12892-1

Zhang L.T., Duan Y.J., Wada T., Kato H., Pelletier J.M., Crespo D., Pineda E., Qiao J.C. Dynamic mechanical relaxation behavior of Zr35Hf17.5Ti5.5Al12.5Co7.5Ni12Cu10 high entropy bulk metallic glass. Journal of Materi-als Science & Technology. 2021;83:248–255. https://doi.org/10.1016/j.jmst.2020.11.074

Zhang Y.R., Zhang W., Xiang Q.C., Li Q.F., Ren Y.L., Qiu K.Q. Relating activation of brittle-to-ductile transition to βrelaxation in Cu46Zr44Al7Y3 metallic glass. Journal of Non-Crystalline Solids. 2020;544:120189.https://doi.org/10.1016/j.jnoncrysol.2020.120189

Cheng Y.T., Hao Q., Qiao J.C., Crespo D., Pineda E., Pelletier J.M. Effect of minor addition on dynamic mechanical relaxation in ZrCu-based metallic glasses. Journal of Non-Crystalline Solids. 2021;553:120496. https://doi.org/10.1016/j.jnoncrysol.2020.120496

Qiao J.C., Cong J., Wang Q., Pelletier J.M., Yao Y. Effects of iron addition on the dynamic mechanical relaxation of Zr55Cu30Ni5Al10 bulk metallic glasses. Journal of Alloys and Compounds. 2018;749:262–267.https://doi.org/10.1016/j.jallcom.2018.03.285

Qiao J., Pelletier J.-M., Casalini R. Relaxation of bulk metallic glasses studied by mechanical spectroscopy. Journal of Physical Chemistry B. 2013;117(43):13658–13666. https://doi.org/10.1021/jp4067179

Zhang W., Xiang Q.C., Ma C.Y., Ren Y.L., Qiu K.Q. Relaxation-to-rejuvenation transition of a Ce-based metallic glass by quench-ing/cryogenic treatment performedat sub-Tg. Journal of Alloys and Compounds. 2020;825:153997. https://doi.org/10.1016/j.jallcom.2020.153997

Qiao J.C., Chen Y.H., Casalini R., Pelletier J.M., Yao Y. Main αrelaxation and slow βre-laxation processes in a La30Ce30Al15Co25 metallic glass. Journal of Materials Science & Technology. 2019; 35(6):982–986.https://doi.org/10.1016/j.jmst.2018.12.003

Zhai W., Wang C.H., Qiao J.C., Pelletier J.M., Dai F.P., Wei B. Distinctive slow βrelaxation and structural heterogeneity in (LaCe)-based metallic glass. Journal of Alloys and Com-pounds. 2018;742:536–541.https://doi.org/10.1016/j.jallcom.2018.01.237

Michalik S., Michalikova J., Pavlovic M., So-vak P., Liermann H.-P., Miglierini M. Struc-tural modifications of swift-ion-bombarded metallic glasses studied by high-energy X-ray synchrotron radiation. Acta Materialia. 2014;80:309–316. https://doi.org/10.1016/j.actamat.2014.07.072

Lu Z., Zhang Y., Li W., Wang J., Liu X., Wu Y.,Wang H., Ma D., Lu Z. Materials genome strategy for metallic glasses. Journal of Mate-rials Science & Technology. 2023;166:173–199. https://doi.org/10.1016/j.jmst.2023.04.074

Lv Z., Yuan C., Ke H., Shen B. Defects activa-tion in CoFe-based metallic glasses during creep deformation. Journal of Materials Science & Technology. 2021;69:42–47. https://doi.org/10.1016/j.jmst.2020.08.012

Wang T., Ma X., Chen Y., Qiao J., Xie L., Li Q. Structural heterogeneity originated plastici-ty in Zr–Cu–Al bulk metallic glasses.Interme-tallics.2020;121:106790.https://doi.org/10.1016/j.intermet.2020.106790

Cui X., Qiao J.C., Li J.J., Meng L.Z., Guo J., Zu F.Q., Zhang X.F., Bian B.C., Zhang Q.D., Ma Y.B. Room temperature activated slow βrelaxation and large compressive plasticity in a LaCe-based bulk metallic glass.Intermetallics. 2020:122:106793. https://doi.org/10.1016/j.intermet.2020.106793

Song L., Xu W., Huo J., Wang J.-Q., Wang X., Li R. Two-step relaxations in metallic glasses during isothermal annealing. Intermetallics.2018;93:101–105. https://doi.org/10.1016/j.intermet.2017.11.016

Pan J., Wang Y.X., Guo Q., Zhang D., Greer A.L., Li Y. Extreme rejuvenation and softening in a bulk metallic glass. Nature Communica-tions. 2018; 9:560.https://doi.org/10.1038/s41467-018-02943-4

Zhu Y., Wang H., Wu L., Li M. Development of one-dimensional periodic packing in metallic glass spheres. Scripta Materialia. 2020;177:132–136.https://doi.org/10.1016/j.scriptamat.2019.10.026

Lou H., Zeng Z., Zhang F., Chen S., Luo P., Chen X., Ren Y., Prakapenka V.B., Prescher C., Zuo X., Li T., Wen J., Wang W.-H., Sheng H., Zeng Q. Two-way tuning of structural or-der in metallic glasses. Nature Communica-tions. 2020;11:314.https://doi.org/10.1038/s41467-019-14129-7

Michalik Š., Jóvári P., Saksl K., Ďurišin M., Balga D., Darpentigny J., Drakopoulos M. Short range order and crystallization of Cu–Hf metallic glasses. Journal of Alloys and Compounds. 2021;853:156775.https://doi.org/10.1016/j.jallcom.2020.156775

Feng S.,Fu H., Zhou H., Wu Y., Lu Z., Dong H. A general and transferable deep learning framework for predicting phase formation in materials. Computational Materials.2021;7:10.https://doi.org/10.1038/s41524-020-00488-z

Zheng J., Zhang H., Miao Y., Chen S., Vlassak J.J. Temperature-resistance sensor arrays for combinatorial study of phase transitions in shape memory alloys and metallic glasses. Scripta Ma-terialia. 2019;168:144–148. https://doi.org/10.1016/j.scriptamat.2019.04.027

Cao C.R., Huang K.Q., Shi J.A., Zheng D.N., Wang W.H., Gu L., Bai H.Y. Liquid-like be-haviours of metallic glassy nanoparticles at room temperature. Nature Communications. 2019:1966. https://doi.org/10.1038/s41467-019-09895-3

Chen E.-Y., Peng S.-X., Peng L., Michiel M.D., Vaughan G.B.M., Yu Y., Yu H.-B., Ruta B., Wei S.,Liu L. Glass-forming ability correlated with the liquid-liquid transition in Pd42.5Ni42.5P15 alloy. Scripta Materialia. 2021;193:117–121. https://doi.org/10.1016/j.scriptamat.2020.10.042

Xie X., Lo Y.-C., Tong Y., Qiao J., Wang G., Ogata S., Qi H., Dahmen K.A., Gao Y., Liaw P.K. Origin of serrated flow in bulk metallic glasses. Journal of the Mechanics and Physics of Solids. 2019;124:634–642.https://doi.org/10.1016/j.jmps.2018.11.015

Adjaoud O., Albe K. Microstructure formation of metallic nanoglasses: Insights from molecu-lar dynamics simulations. Acta Materialia. 2018;145:322–330. https://doi.org/10.1016/j.actamat.2017.12.014

Adjaoud O., Albe K. Influence of microstruc-tural features on the plastic deformation behav-ior of metallic nanoglasses. Acta Materialia. 2019;168:393–400. https://doi.org/10.1016/j.actamat.2019.02.033

Wang C., Mu X., Chellali M.R., Kilmametov A., Ivanisenko Yu., Gleiter H., Hahn H. Tuning the Curie temperature of Fe90Sc10 nanoglasses by varying the volume fraction and the composition of the interfaces. Scripta Materialia. 2019;159:109–112. https://doi.org/10.1016/j.scriptamat.2018.09.025

Maaß R. Beyond serrated flow in bulk metallic glasses: what comes next? Metallurgical and Materials Transactions A.2020;51:5597–5605. https://doi.org/10.1007/s11661-020-05985-w

Ibrahim M.Z., Sarhan A.A.D., Kuo T.Y., Yusof F., Hamdi M. Characterization and hardness enhancement of amorphous Fe-based metallic glass laser cladded on nickel-free stainless steel for biomedical implant applica-tion. Materials Chemistry and Physics. 2019;235:121745. https://doi.org/10.1016/j.matchemphys.2019.121745

Escher B., Kaban I., Kühn U., Eckert J., Pauly S. Stability of the B2 CuZr phase in Cu-Zr-Al-Sc bulk metallic glass matrix composites. Journal of Alloys and Compounds. 2019;790:657–665.https://doi.org/10.1016/j.jallcom.2019.03.139

Schultz L.E., Afflerbach B., Szlufarska I., Mor-gan D. Molecular dynamic characteristic temper-atures for predicting metallic glass forming ability. Computational Materials Science. 2022;201:110877. https://doi.org/10.1016/j.commatsci.2021.110877

Ali Rafique M.M. Bulk Metallic Glasses and Their Composites: Additive Manufacturing and Modeling and Simulation. Berlin. Boston: De Gruyter. 2021.https://doi.org/10.1515/9783110747232

Загрузки

Опубликован

30.06.2024

Как цитировать

Пэй, Ч. ., Иванов, Ю. Ф., Семин, А. П. ., Боровский, С. В. ., Громов, В. Е. ., & Шляров, В. В. . (2024). МЕТАЛЛИЧЕСКИЕ СТЕКЛА ИЗ ВЫСОКОЭНТРОПИЙНЫХ СПЛАВОВ: СВОЙСТВА, ОСОБЕННОСТИ ПОЛУЧЕНИЯ И ИСПОЛЬЗОВАНИЯ. Вестник Сибирского государственного индустриального университета, 1(2), 10–22. https://doi.org/10.57070/2304-4497-2024-2(48)-10-22

Выпуск

Раздел

Физика конденсированного состояния

Похожие статьи

Вы также можете начать расширеннвй поиск похожих статей для этой статьи.

Наиболее читаемые статьи этого автора (авторов)

1 2 3 > >>