МЕТОДЫ МОДЕЛИРОВАНИЯ ФАЗОВЫХ ПРЕВРАЩЕНИЙ В БЕЙНИТНЫХ СТАЛЯХ
DOI:
https://doi.org/10.57070/2304-4497-2023-2(44)-60-71Ключевые слова:
модель фазового поля, JMAK, фазовые превращения, бейнитная сталь, рельсыАннотация
К механическим свойствам и эксплуатационным характеристикам рельсовых сталей предъявляются повышенные требования. В связи с этим разработка новых марок рельсовых сталей на сегодняшний день является актуальной задачей. Бейнитные стали, не содержащие карбидов, являются своего рода потенциальными кандидатами для применения на железных дорогах, благодаря своей более высокой вязкости разрушения, сопротивлению усталости и износостойкости. Процесс термической обработки оказывает существенное влияние на механические свойства бейнитных рельсовых сталей. Решающим фактором, определяющим технологию производства рельсовых сталей, является прогнозирование микроструктуры. Для того, чтобы отойти от метода перебора, необходимо создавать
математические модели охлаждения рельсов, учитывающие химический состав стали. Для моделирования структурно-фазовых превращений в рельсах для неизотермических условий разрабатываются два подхода: Аврами-Колмогорова с учетом правила Шейля и модель фазового поля. Настоящий обзор посвящен современным исследованиям по компьютерному моделированию структурно-фазовых превращений по этим двум подходам. Первый подход был предложен в 30-е годы XX века для изотермических условий, позднее был развит для неизотермического случая в рамках правила Шейля. В настоящее время к этому подходу интерес со стороны исследователей не ослабевает из-за малого времени расчета. Однако описать пространственное распределение фаз и структур этот метод не может, поэтому активно развиваются методы фазового поля, расчеты по которому могут занимать от нескольких часов до нескольких суток. В представленном обзоре проведен анализ указанных подходов, а также продемонстрированы их ограничения.
Библиографические ссылки
Garnham J.E., Davis C.L. Rail materials. In: Wheel-rail interface handbook. 2009. P. 125–171. https://doi.org/10.1533/9781845696788.1.125
Vickerman R. International Encyclopedia of Transportation. Elsevier, 2021. P. 4569–4418.
Mićić M., Brajović L., Lazarević L., Popović Z. Inspection of RCF rail defects – Review of NDT methods // Mechanical Systems and Signal Processing. 2023. Vol. 182. Article 109568.
Królicka A., Lesiuk G., Radwański K., Kuziak R., et al. Comparison of fatigue crack growth rate: Pearlitic rail versus bainitic rail // International Journal of Fatigue. 2021. Vol. 149. Article 106280. http://dx.doi.org/10.1016/j.ijfatigue.2021.106280
Aglan H.A. Fatigue crack growth and fracture behavior of bainitic rail steels. United States. Federal Railroad Administration. Office of Railroad Policy and Development, 2011.
Ruijie Z., Chunlei Z., Bo L., Xubiao W., Xiaofeng L., et al. Research progress on rolling contact fatigue damage of bainitic rail steel // Engineering Failure Analysis. 2022. Article 106875. http://dx.doi.org/10.56748/ejse.131621
Hasan S.M., Chakrabarti D., Singh S.B. Dry rolling/sliding wear behaviour of pearlitic rail and newly developed carbide-free bainitic rail steels // Wear. 2018. Vol. 408. P. 151–159. https://doi.org/10.1016/j.wear.2018.05.006
Tung P.Y., Zhou X., Morsdorf L., Morsdorf L., et al. Formation mechanism of brown etching layers in pearlitic rail steel // Materialia. 2022. Vol. 26. Article 101625. http://dx.doi.org/10.1016/j.mtla.2022.101625
Wang K., Tan Z., Gao G., Gui X., Misra, Bingzhe Baia. 2016. “Ultrahigh strength-toughness combination in Bainitic rail steel: The determining role of austenite stability during tempering” // Materials Science and Engineering A..2016. Vol. 662. P. 162–168. http://dx.doi.org/10.1016/j.msea.2016.03.043
Zhang R., Zheng C., Chen C., Lv B., et al. Study on fatigue wear competition mechanism and microstructure evolution on the surface of a bainitic steel rail // Wear. 2021. Vol. 482. Article 203978. http://dx.doi.org/10.1016/j.wear.2021.203978
Stock R., Pippan R. RCF and wear in theory and practice-The influence of rail grade on wear and RCF // Wear. 2011. Vol. 271. No. 1-2. P. 125–133. http://dx.doi.org/10.1016/j.wear.2010.10.015
Ueda M., Matsuda K. Effects of carbon content and hardness on rolling contact fatigue resistance in heavily loaded pearlitic rail steels // Wear. 2020. Vol. 444. Article 203120. https://doi.org/10.1016/j.wear.2019.203120
Kumar A., Dutta A.,Makineni S.K., HerbigM., et al. In-situ observation of strain partitioning and damage development in continuously cooled carbide-free bainitic steels using micro digital image correlation // Materials Science and Engineering: A. 2019. Vol. 757. P. 107–116. http://dx.doi.org/10.1016/j.msea.2019.04.098
Sourmail T., Caballero F.G., García-Mateo C., Smanio V., et al. Evaluation of potential of high Si high C steel nanostructured bainite for wear and fatigue applications // Materials Science and Technology. 2013. Vol. 29. No. 10. P. 1166–1173. http://dx.doi.org/10.1179/1743284713Y.0000000242
Kumar A., Makineni S.K., Dutta A., Goulas C., et al. Design of high-strength and damage-resistant carbide-free fine bainitic steels for railway crossing applications // Materials Science and Engineering: A. 2019. Vol. 759. P. 210–223.
Leiro A., Kankanala A., Vuorinen E., Prakash B. Tribological behaviour of carbide-free bainitic steel under dry rolling/sliding conditions // Wear. 2011. Vol. 273. No. 1. P. 2–8. http://dx.doi.org/10.1016/j.wear.2011.03.025
Hu F., Wu K.M., Hodgson P.D. Effect of retained austenite on wear resistance of nanostructured dual phase steels // Materials Science and Technology. 2016. Vol. 32. No. 1. P. 40–48.
Liu J., Li Y., Zhang Y., Hu Y., et al. Dry rolling/sliding wear of bainitic rail steels under different contact stresses and slip ratios // Materials. 2020. Vol. 13. No. 20. P. 4678. http://dx.doi.org/10.3390/ma13204678
Masoumi M., Ariza E.A., Sinatora A., Goldenstein H. Role of crystallographic orientation and grain boundaries in fatigue crack propagation in used pearlitic rail steel // Materials Science and Engineering: A. 2018. Vol. 722. P. 147–155. http://dx.doi.org/10.1016/j.msea.2018.03.028
Zhou Y., Wang S., Wang T., Xu Y., Li Z. Field and laboratory investigation of the relationship between rail head check and wear in a heavyhaul railway // Wear. 2014. Vol. 315. No. 1–2. P. 68–77. http://dx.doi.org/10.1016/j.wear.2014.04.004
Ding H.H., Fu Z.K., Wang W.J., Guo J., et al. Investigation on the effect of rotational speed on rolling wear and damage behaviors of wheel/rail materials // Wear. 2015. Vol. 330. P. 563–570. http://dx.doi.org/10.1016/j.wear.2014.12.043
Huang Y.B., Shi L.B., Zhao X.J., Cai Z.B., et al. On the formation and damage mechanism of rolling contact fatigue surface cracks of wheel/rail under the dry condition // Wear. 2018. Vol. 400. P. 62–73. http://dx.doi.org/10.1016/j.wear.2017.12.020
Guo L.C., Zhu W.T., Shi L.B., Liu Q.Y., et al. Study on wear transition mechanism and wear map of CL60 wheel material under dry and wet conditions // Wear. 2019. Vol. 426. P. 1771–1780. http://dx.doi.org/10.1016/j.wear.2018.12.049
Maya-Johnson S., Santa J. F., Toro A. Dry and lubricated wear of rail steel under rolling contact fatigue-Wear mechanisms and crack growth // Wear. 2017. Vol. 380. P. 240–250. http://dx.doi.org/10.1016/j.wear.2017.03.025
Benoît D., Salima B., Marion R. Multiscale characterization of head check initiation on rails under rolling contact fatigue: Mechanical and microstructure analysis // Wear. 2016. Vol. 366. P. 383–391. http://dx.doi.org/10.1016/j.wear.2016.06.019
Messaadi M., Oomen M., Kumar A. Friction modifiers effects on tribological behaviour of bainitic rail steels // Tribology international. 2019. Vol. 140. Article 105857.
Lee K.M., Polycarpou A.A. Wear of conventional pearlitic and improved bainitic rail steels // Wear. 2005. Vol. 259. No. 1–6. P. 391–399. http://dx.doi.org/10.1016/j.wear.2005.02.058
Hasan S.M., Chakrabarti D., Singh S.B. Dry rolling/sliding wear behaviour of pearlitic rail and newly developed carbide-free bainitic rail steels // Wear. 2018. Vol. 408. P. 151–159. http://dx.doi.org/10.1016/j.wear.2018.05.006
Liu J.P., Li Y.Q., Zhou Q.Y., Zhang Y. H., et al. New insight into the dry rolling-sliding wear mechanism of carbide-free bainitic and pearlitic steel // Wear. 2019. Vol. 432. Article 202943. https://doi.org/10.1016/j.wear.2019.202943
Chen Y., Ren R., Pan J., Pan R., et al. Microstructure evolution of rail steels under different dry sliding conditions: A comparison between pearlitic and bainitic microstructures // Wear. 2019. Vol. 438. Article 203011. https://doi.org/10.1016/j.wear.2019.203011
Li Q., Guo J., Zhao A. Effect of upper bainite on wear behaviour of high-speed wheel steel // Tribology Letters. 2019. Vol. 67. P. 1–9.
Kuziak R., Pidvysotskyy V., Pernach M., Rauch L., et al. Selection of the best phase transformation model for optimization of manufacturing processes of pearlitic steel rails //Archives of Civil and Mechanical Engineering. 2019. Vol. 19. P. 535–546. http://dx.doi.org/10.1016/j.acme.2018.12.004
Tehler M. Modeling phase transformations and volume changes during cooling of case hardening steels. KTH, 2009.
Bzowski K., Rauch L., Pietrzyk M. Application of statistical representation of the microstructure to modeling of phase transformations in DP steels by solution of the diffusion equation // Procedia Manufacturing. 2018. Vol. 15. P. 1847–1855. http://dx.doi.org/10.1016/j.promfg.2018.07.205
Rauch L., Kuziak R., Pietrzyk M. From high accuracy to high efficiency in simulations of processing of Dual-Phase steels // Metallurgical and Materials transactions B. 2014 Vol. 45. P. 497–506. http://dx.doi.org/10.1007/s11663-013-9926-5
Rheingans B., Mittemeijer E.J. Phase transformation kinetics: advanced modeling strategies // JOM. 2013. Vol. 65. P. 1145–1154.
Starink M.J. On the meaning of the impingement parameter in kinetic equations for nucleation and growth reactions // Journal of Materials Science. 2001. Vol. 36. No. 18. P. 4433–4441.
Todinov M.T. On some limitations of the Johnson–Mehl–Avrami–Kolmogorov equation // Acta materialia. 2000. Vol. 48. No. 17. P. 4217–4224.
Kempen A.T.W., Sommer F., Mittemeijer E.J. Determination and interpretation of isothermal and non-isothermal transformation kinetics; the effective activation energies in terms of nucleation and growth // Journal of materials science. 2002. Vol. 37. P. 1321–1332. https://doi.org/10.1023/a:1014556109351
Liu F., Sommer F., Bos C., Mittemeijer E.J. Analysis of solid state phase transformation kinetics: models and recipes // International materials reviews. 2007. Vol. 52. No. 4. P. 193–212. http://dx.doi.org/10.1179/174328007X160308
Robson J.D. Modeling competitive continuous and discontinuous precipitation // Acta Materialia. 2013. Vol. 61. No. 20. P. 7781–7790. http://dx.doi.org/10.1016/j.actamat.2013.09.017
Ranganathan S., Von Heimendahl M. The three activation energies with isothermal transformations: applications to metallic glasses // Journal of Materials Science.1981. Vol. 16. P. 2401–2404.
Liu F., Sommer F., Mittemeijer E.J. Analysis of the kinetics of phase transformations; roles of nucleation index and temperature dependent site saturation, and recipes for the extraction of kinetic parameters // Journal of Materials Science. 2007. Vol. 42. P. 573–587.
Dill E.D., Folmer J.C.W., Martin J.D. Crystal growth simulations to establish physically relevant kinetic parameters from the empirical Kolmogorov–Johnson–Mehl–Avrami model // Chemistry of Materials. 2013. Vol. 25. No. 20. P. 3941–3951.
Weinberg M.C. A test of the Johnson-Mehl-Avrami equation // Journal of crystal growth. 1987. Vol. 82. No. 4. P. 779–780. https://doi.org/10.1016/S0022-0248(87)80025-8
Weinberg M.C., Birnie III D.P., Shneidman V.A. Crystallization kinetics and the JMAK equation // Journal of non-crystalline solids. 1997. Vol. 219. P. 89–99. https://doi.org/10.1016/S0022-3093%2897%2900261-5
Kelton K.F., Spaepen F.A study of the devitrification of Pd82Si18 over a wide temperature range // Acta Metallurgica. 1985. Vol. 33. No. 3. P. 455–464.
Yinnon H., Uhlmann D.R. Applications of thermoanalytical techniques to the study of crystallization kinetics in glass-forming liquids, part I: theory // Journal of NonCrystalline Solids. 1983. Vol. 54. No. 3. P. 253–275.
Levine L.E., Narayan K.L., Kelton K.F. Finite size corrections for the Johnson-Mehl-Avrami-Kolmogorov equation // Journal of Materials Research. 1997. Vol. 12. P. 124–132.
Chen L.Q. Annu Rev Mater Res // Annu. Rev. Mater. Res. 2002. Vol. 32. P. 113–140.
Fallah V., Amoorezaei M., Provatas N., Corbin S.F., et al. Phase-field simulation of solidification morphology in laser powder deposition of Ti–Nb alloys // Acta Materialia. 2012. Vol. 60. No. 4. P. 1633–1646. http://dx.doi.org/10.1016/j.actamat.2011.12.009
Beckermann C., Diepers H.J., Steinbach I., Karma A., et al. Modeling melt convection in phase-field simulations of solidification // Journal of Computational Physics. 1999. Vol. 154. No. 2. P. 468–496.
Böttger B., Apel M., Eiken J., Schaffnit P., et al. Phase‐Field simulation of solidification and solid‐state transformations in multicomponent steels // Steel Research International. 2008. Vol. 79. No. 8. P. 608–616. http://dx.doi.org/10.2374/SRI08SP021-79-2008-608
Tiaden J. Phase-field simulations of the peritectic solidification of Fe-C // Journal of Crystal Growth. 1999. Vol. 198. P. 1275–1280.
Steinbach I., Pezzolla F., Nestler B., Seeßelberg M., et al. A phase field concept for multiphase systems // Physica D: Nonlinear Phenomena. 1996. Vol. 94. No. 3. P. 135–147.
Militzer M. Phase field modeling of microstructure evolution in steels // Current Opinion in Solid State and Materials Science. 2011. Vol. 15. No. 3. P. 106–115. https://doi.org/10.1016/j.cossms.2010.10.001
Pariser G., Schaffnit P., Steinbach I., Bleck, W. Simulation of the γ–α‐transformation using the phase‐field method // Steel Research. 2001. Vol. 72. No. 9. P. 354–360. http://dx.doi.org/10.1002/srin.200100130
Elder K.R., Grant M., Provatas N., Kosterlitz J. M. Sharp interface limits of phase-field models // Physical Review E. 2001. Vol. 64. No. 2. Article 021604. http://dx.doi.org/10.1103/PhysRevE.64.021604
Jou H.J., Lusk M.T. Comparison of Johnson-Mehl-Avrami-Kologoromov kinetics with a phase-field model for microstructural evolution driven by substructure energy // Physical Review B. 1997. Vol. 55. No. 13. P. 8114. http://dx.doi.org/10.1103/PhysRevB.55.8114
Загрузки
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Copyright (c) 2023 Артем Дмитриевич Филяков, Владимир Дмитриевич Сарычев, Илья Игоревич Чумачков

Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.